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Forewords

IWST, standing for International Workshop on Smalltalk Technologies, is a European
Smalltalk User Group (ESUG) Conference joint event. IWST was launched in 2009, in
Brest, during the 17th ESUG Conference. IWST 2014 is the sixth edition.

ESUG gathers groups of professionals and hobbyists who share an interest in the
Smalltalk program- ming languages and related technologies. IWST was set up from a will
to promote research activities - namely academic creative work under- taken on smalltalk
use, and more generally on object technologies - apart from the ESUG main event. The
goal of the workshop is to create a forum around advances or experience in Smalltalk.
IWST contributes to triggering discussions and exchanges of ideas. Contributions are
welcome on all aspects, theoretical as well as practical, of Smalltalk related topics such as:

• Aspect-oriented programming,

• Meta-programming,

• Frameworks,

• Interaction with other languages, • Implementation,

• New dialects or languages implemented in Smalltalk, • Tools,

• Meta-modeling,

• Design patterns,

• Experience reports

Alain Plantec and Jannik Laval
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Abstract
The Cog virtual machine features a bytecode interpreter
and a baseline Just-in-time compiler. To reach the perfor-
mance level of industrial quality virtual machines such as
Java HotSpot, it needs to employ an adaptive inlining com-
piler, a tool that on the fly aggressively optimizes frequently
executed portions of code. We decided to implement such a
tool as a bytecode to bytecode optimizer, implemented above
the virtual machine, where it can be written and developed
in Smalltalk. The optimizer we plan needs to extend the op-
erations encoded in the bytecode set and its quality heavily
depends on the bytecode set quality.

The current bytecode set understood by the virtual ma-
chine is old and lacks any room to add new operations. We
decided to implement a new bytecode set, which includes
additional bytecodes that allow the Just-in-time compiler to
generate less generic, and hence simpler and faster code se-
quences for frequently executed primitives. The new byte-
code set includes traps for validating speculative inlining de-
cisions and is extensible without compromising optimization
opportunities. In addition, we took advantage of this work to
solve limitations of the current bytecode set such as the max-
imum number of instance variable per class, or number of
literals per method. In this paper we describe this new byte-
code set. We plan to have it in production in the Cog virtual
machine and its Pharo, Squeak and Newspeak clients in the
coming year.

1. Introduction
The Cog virtual machine (VM) is quite efficient compared to
popular language such as Python or Ruby, but is still far be-
hind mainstream languages such as Java. This is because the
VM does not have an adaptive Just-in-time (JIT) compiler,
a tool that recompiles on the fly portion of code frequently
executed to portion of code faster to run.

[Copyright notice will appear here once ’preprint’ option is removed.]

As we implement the adaptive optimizer as a bytecode
to bytecode optimizer, we rely heavily on the bytecode set
design. We need to adapt it to be suitable for optimizations
and extend it with unsafe operations. The current bytecode
set needs revising because of the lack of available bytecodes
and the lack of unsafe operations (operations faster to run as
they do not check any constraints) as well as the implemen-
tation of primitives, forbidding respectively to efficiently ex-
tend the bytecode and to inline primitive methods. In addi-
tion, the current bytecode set has well-known issues such as
a maximum number of instructions a jump forward can en-
code and we took advantage of the bytecode set revamp to
fix these problems, ending up with important simplification
in the VM implementation.

We design a new bytecode set with the following im-
provements:

• It provides many available bytecodes to be easily and
efficiently extendable.

• It features a set of unsafe operations for the runtime
optimizer.

• It encodes the primitives in a way they can be inlined.
• It solves some well-known issues of the old bytecode set.

In this paper we describe the constraints we have to de-
sign a better bytecode set. We specify for each constraint if
it applies for all the bytecode set designs or only in our case
to design a bytecode set for adaptive optimizations.

After describing how the current bytecode is used in our
virtual machine and Smalltalk clients, we discuss the current
issues and missing features, then show how we solve the
current issues. We also discuss some aspects of the new
bytecode set and compare it to related work.

2. The Cog bytecode execution and memory
model

Smalltalk has a runtime very similar to the Java Virtual
Machine (JVM)[12], the Common Language Infrastructure
(CLR)[6] and other common platform-independent object-
oriented languages. To execute code, a high level compiler
translates the Smalltalk source code into bytecode, a low
level language. The bytecode is then executed by a virtual
machine, being either interpreted or compiled down to na-
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tive code through a just-in-time compiler. The virtual code
is platform-independent and is encoded in bytes for com-
pactness. Its byte encoding gives it the name bytecode.

A new memory manager, named Spur, has been recently
introduced in the Cog VM[11]. All the figures and examples
about memory representation we describe show the objects
in the new Memory Manager format.

Two main bytecode sets are now supported in the Cog
VM. One targets the Smalltalk clients, Squeak and Pharo,
whereas the other one targets a research language named
Newspeak. In this paper we focus on the bytecode set for
Smalltalk clients, as the new bytecode set is for now exclu-
sively for Smalltalk and would need to be adapted to be used
with Newspeak.

2.1 Vocabulary
After looking at several bytecode sets and working on ours,
we decided to describe bytecode operations by using three
forms. Here is the definition of the three forms proposed,
with examples from the new bytecode set:

• single bytecode: the instruction is encoded in a single
byte. For example, the byte B0 means that the execution
flow needs to jump forward by two instructions and the
bytecode 4D means that the interpreter should push the
boolean true on the stack.

• extended bytecode: the instruction is encoded in two
bytes. The first byte defines the instruction and the sec-
ond byte encodes an index relative to the execution of
the instruction. For example, the byte E5 means that the
interpreter should push a temporary variable on the stack,
the index of the temporary variable being encoded in the
next byte.

• double extended bytecode: the instruction is encoded in
three bytes. The first byte defines the instruction and the
second and third bytes encode an index relative to the
execution of the instruction. For example, the byte FC
means that the interpreter needs to push on the stack a
variable in a remote array, the index of the remote array
being encoded in the second byte and the index of the
variable in the remote array is encoded in the third byte.

We call extended bytecode and double extended bytecode
argument bytecodes, because they require extra byte(s) to
encode the expected virtual machine behavior.

We always use the name bytecode to refer to the virtual
code, i.e., the code understood by a virtual machine and not
native code understood by a processor.

2.2 The Cog compiled method format
The bytecode, executable by the virtual machine, is saved in
the heap - memory space reserved for object - in the form of
compiled method[1]. A compiled method is an object encap-
sulating executable bytecode. In addition to the bytecode, a
compiled method has, as shown in Figure 1:

• An object header (as every object in the system) to inform
the virtual machine about basic properties such as its size,
its class or its hash.

• A literal array that is used aside from the bytecode to
fetch specific objects by the virtual machine to execute
code.

• A compiled method header (specific to compiled method)
to inform the virtual machine about basic properties such
as its number of arguments or its number of temporaries.

• A source pointer to encode the way the IDE can get the
method source code.

The format in memory of a compiled method is very
specific. Common objects are word-aligned or byte-aligned
on all their length. However, a compiled method is a mixed
form of an array (its first fields in memory correspond to
the compiled method header, encoded as a small integer, and
its literals) and a byte array (its next fields correspond to its
bytecode and its source pointer).

Object header (8 bytes)

literals (4 bytes per literal)

compiled method header (4 bytes)

bytecodes (variable)

source pointer (variable, usually 4 bytes)

Memory representation of
Compiled Method in 32 bits 

with the new Memory Manager Spur

Figure 1. Memory representation of a Compiled method

Changes in the bytecode set design impacts both the
memory zones for the compiled method header and for the
bytecodes, but does not affect the compiled method object’s
header, its literal frame nor its source pointer encoding.

3. Challenges for a good bytecode set
3.1 Generic challenges
Any one who has to design a bytecode set faces some chal-
lenges. We enumerate the major ones we noticed in this sub-
section.

Platform-independent. Applications running on top of
Cog are currently deployed on production on different oper-
ating systems: Linux, Mac OS X, Windows, iOS, Android
and RISC OS and on different processors: ARM 32bits, Intel
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x86 and Intel x86_64. Therefore, our bytecode set needs to
be platform-independent, more specifically processor inde-
pendent and operating system independent.

Compaction. To have the minimum memory footprint, a
bytecode set needs to be able to encode all the compiled
methods of system in the minimum number of bytes.

Easy decoding. The bytecode is mainly used by the inter-
preter to be executed, the JIT compiler to generate native
code and in-image to analyze the compiled methods. There-
fore, a good bytecode set needs to be easy to decode, decod-
ing being used for analysis, interpretation and compilation.

Conflicts. One cannot have a very compact and very easy
to decode bytecode set. Related work[9] has shown that a
bytecode set can be compressed by 40% to 60% by shar-
ing the bytecode in a Huffman table, but the bytecode be-
comes then harder to decode, which complicates the virtual
machine interpreter, the JIT compiler and bytecode analy-
sis. This extra difficulty also impacts performance (9% per-
formance loss in their work). Therefore, one has to choose
between easier decoding or extreme compaction. Our tar-
gets, such as the latest iPhone or the Raspberry pie have at
least 256Mb of RAM. The Pharo memory footprint is usu-
ally around 20 Mb on production application. Therefore, we
prefer to ease the decoding over compacting the bytecode.
We want the new bytecode encoding to be at worst the same
size as the old bytecode encoding but easier to decode.

Backward compatibility. Some frameworks and libraries
may rely on the bytecode format to work. It includes compil-
ers and virtual machines implementations that the designer
of the new bytecode set has obviously to consider, but it also
includes other frameworks such as serializers. A serializer
typically reuses the bytecode encoding to serialize a com-
piled method. Changing the code set implies either to be
backward compatible to have these tools working or fix all
the frameworks and libraries.

3.2 Challenges specific to our goals
The runtime bytecode to bytecode optimizer we plan will
perform classical dynamic language adaptive optimizations
such as inlining based on type feeback[7] and bounds check
elimination[2]. Here is a typical example:

MyDisplayClass>>example: anArray
anArray do: [ :elem | self displayOnScreen: elem ].

Array(SequenceableCollection)>>do: aBlock
1 to: self size do:

[:index | aBlock value: (self at: index)]

Firstly, based on type-feed back the runtime optimizer no-
tices that the argument of MyDisplayClass»example: is always
an Array, and then inlines the message send to the array as
well as the closure activation, adding a guard that triggers
deoptimization if the assumption that anArray is an Array

is not valid any more. We represented the guard in pseudo
Smalltalk code so the code is readable, but of course a guard
is typically implemented in a very efficient way in native
code.

MyDisplayClass>>OptimizedVersion1OfExample: anArray
Guard: [ anArray class == Array

ifFalse: [ DynamicDeoptimization ] ].
1 to: anArray size do: [ :index |

self displayOnScreen: (anArray at: index) ].

The optimizer wants then to inline additional messages
sent to anArray: size and at:. After inlining these two mes-
sages, it notices that index is always within the bounds of
anArray because the to:do: selector sent on an integer enforces
that the block argument is an integer between 1 and anAr-
ray size (This is typically inlined statically by the compiler).
Therefore the optimizer edit the at: instruction to fetch the
field of the objects at the index without checking that the in-
dex is within the bounds of anArray. In pseudo code, it would
mean:

MyDisplayClass>>OptimizedVersion1OfExample: anArray
Guard: [ anArray class == Array

ifFalse: [ DynamicDeoptimization ] ].
1 to: anArray inlinedSize do: [ :index |

self displayOnScreen: (anArray
inlinedNoBoundsCheckAt: index) ].

To be able to do this kind of optimizations, the bytecode
set needs specific requirements and instructions that we de-
tail in this subsection.

All methods should be inlinable. All methods and closure
activations should be able to be inlined by the optimizer, in-
cluding primitives. Inlining non primitive methods removes
the overhead of a CPU call and allows the optimizer to have
bigger portions of code to optimize. Inlining performance
critical primitives allows the optimizer to perform additional
critical optimizations such as bound check elimination. Due
to inlining, optimized methods are bigger than regular meth-
ods: they may have jumps of thousands of instructions or
thousands of literals. In addition, inlining a method may al-
low an object to access directly the instance variable of an-
other object. Therefore, the bytecode needs to be able to en-
code compiled methods with:

• Inlined primitives
• Very large jump
• Very large number of literals
• Access to non receiver instance variable

Unsafe operations. Smalltalk primitives are type safe,
which means that calling a primitive with inappropriate ar-
guments will trigger a primitive failure but will not crash
the execution. Therefore, each primitive needs to guarantee
that the receiver and arguments have one of the expected
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type before being performed. Guaranteeing the type of an
object means additional CPU instructions to run. The run-
time optimizer may want to encode unsafe operations, such
as unchecked array access, if it can guarantee that the given
primitives will not fail to avoid this type check overhead.
The bytecode set needs to be extended to support a set of
unsafe operations, which corresponds to inlined primitives
that are optimized.

Extendable. While implementing more and more opti-
mization passes in our optimizer, we may need to add ex-
tra unsafe operations or to encode new bytecode operations.
The bytecode set needs to be easily extendable without com-
promising optimization opportunities and complicating the
logic of the optimizer.

3.3 Current Bytecode issues
The current bytecode set could be improved compared to the
generic requirements and is definitely not good enough for
our requirements (specification available in Appendix A). In
this subsection we describe the issues we noticed.

Argument bytecodes limits. The current bytecode set has
limitations regarding the size of arguments. There is no pat-
tern to indefinitely expand an argument bytecode. One typ-
ical example is the jump bytecode. This bytecode supports
jump forward up to 1024 instructions, but no more. This is
already an issue because several Pharo users ended up hav-
ing a compilation error due to this problem. They had to fix it
by editing their code, whereas a user should not need to un-
derstand nor see these compiler details. These issues make
it impossible for some methods or closures to be inlined due
to the code creating a jump too big for the encoding.

Few available bytes. One of our main concerns was the
lack of available bytecodes. Only three bytecodes were
available (not associated with an operation). This clearly
limits the extensibility of the current bytecode set, which
is required by our optimizer to easily add new instructions.
We estimate that 10 available bytecodes are needed to be
extended and manipulated in the future.

Primitive index implementation forbid inlining. Another
issue is with the primitive index: by being encoded in the
compiled method header, inlining primitives is not possible.
However, the runtime optimizer needs to optimize critical
primitives such as array access.

DoubleExtendedDoAnything bytecode. The old bytecode
set had a bytecode named "double extended do anything"
bytecode. This bytecode is able, with the proper encoding,
to do almost any operation in the virtual machine. However,
This bytecode creates extra difficulties in the JIT compiler
to properly map the native code program counter to the byte-
code program counter because you always need extra checks
to know if it is a message send or something else. This byte-
code does not fit with our definition of easy decoding. To

be easy to decode, a bytecode set should not encode several
operations in the same byte, or if this is the case then en-
codes very similar operation, such as push new Array and
pop into array, but not operations such as a push, a store and
a message send in one bytecode.

Primitive index is split. The compiled method header
shown in Figure 2 has a strange primitive index field: this
field is split in 2 fields, the main part of the primitive num-
ber and the high bit. This is here for backward compatibility
with the 16bit Squeak version. However, as none of the Cog
users has been using a Smalltalk dialects in 16bit for over
multiple decades, and other recent changes have broken this
compatibility. This split is now useless whereas it compli-
cates the decoding.

s x P a a a a t t t t t t f l l l l l l l l p p p p p p p p p 1

s

x

P

a

t

f

l

p

1

(index 31) 1 bit: sign bit, unused (#signFlag)

(index 30) 1 bit: flag bit, ignored by the VM (#flag)

(index 18) 1 bit: whether a large frame size is needed (#frameSize)

(index 10) 8 bits: number of literals (#numLiterals)

(index 1) 9 bits: main part of primitive number (#primitive)

(index 0) 1 bit: small integer tag (#tag)

(index 29) 1 bit: high-bit of primitive number (#primitive)

(index 25) 4 bits: number of arguments to the method (#numArgs)

(index 19) 6 bits: number of temporary variables (#numTemps)

Old compiled method header

Figure 2. The old compiled method header

Immediate objects waste memory. The bytecode set misses
some compact bytecode for immediate objects. For example,
encoding the SmallInteger 5 requires at least 5 bytes, 4 bytes
to store 5 in the literal array and 1 to 3 bytes for the push
literal bytecode. It is very simple to encode and decode im-
mediate objects in the bytecode, as their virtual machine
representation is also encoded with bytes, and it greatly im-
proves the compactness of the bytecode.

Late addition of closure bytecodes. Real closures were
added in the supported Smalltalk dialects after the old byte-
code set design. There was not a lot of free space in the
bytecode set, so the bytecode for BlockClosure creation was
added in a way that the same bytecode is used to push nil
on the stack and to allocate temporary slots on stack for the
BlockClosure. This makes the decoding of a BlockClosure
complex for the JIT compiler and the in-image analysis due
to the difficulty to fetch the number of temporaries.

Outdated constraints. The current bytecode set has a
string property: most instructions are 16 bits aligned. For
example, instructions 0 to 15 are mapped to push receiver
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variable and instructions 16 to 31 are mapped to push tem-
porary. We asked the old bytecode set designer, Dan Ingalls,
who is also the implementor of the original Smalltalk-80.
It happens that Smalltalk-80 used to run on the Xerox D,
and that this 16 bits alignment was there to easily dispatch
the instructions on microcoded machines. As we do not run
Pharo any more on this kind of machines, we removed this
constraint for the bytecode set design.

4. New bytecode set features
In this section we describe the features of the new bytecode
set, starting by the ones we added for our runtime optimizer
to the other one that improved the bytecode set in general.
Then we explain how we convert a Smalltalk image from
the old bytecode set to the new one to validate the approach.

4.1 Adaptive optimization features
Extendable instructions. One of the most notable feature
of the bytecode set (specification available in Appendix B)
is the addition of an extension bytecode. This bytecode, as
a prefix, extends the following byte by an index encoded in
a byte. In the new bytecode set, each bytecode correspond
to a single instruction. It is not possible, as for the "double
extended do anything" bytecode of the old bytecode set, to
encode different operation in a single byte. By being a prefix,
the extension bytecode does not complicate the JIT compila-
tion, as each bytecode still represent a single instruction, and
an extension bytecode just requires to fetch the appropriate
instruction in a fixed distance (2 bytes further).

This feature allows for example the compiler to generate
jump forward bytecode to an infinite number of instructions.
The jump forward bytecode is a single extended bytecode,
therefore it can jump up to 255 instructions (255 being
encoded in the argument byte). By being prefixed by one
extension, it can encode a jump up to 65535 instructions. If
it is prefixed by two extensions, it can encode a jump up to
16777215 instructions. As one can add as many extensions
as one wants, each instruction accepting extensions can be
extended to the infinite.

Example: Extended conditional jump instruction
(Numbers in hexadecimal)

Byte number EF + next byte
Name jumpFalse:
Bit values 11101111 iiiiiiii
Explanation Pop value on stack and jump if the

value is false by a distance of
distance := iiiiiiii+(ExtensionB*256)

Byte number E1 + next byte
Name ExtensionB (ExtB)
Bit values 11100001 bbbbbbbb
Explanation ExtensionB

ExtB := ExtB*256+bbbbbbbb

bytecode Explanation
sequence
EF 12 jumpFalse: 18
E1 05 EF 12 jumpFalse: 50D

50D = (5*FF)+12
E1 AF E1 jumpFalse: ADA7BC
05 EF 12 ADA7BC = (AF*FF*FF)+(5*FF)+18

Inlined primitives and unsafe operations. The new byte-
code set moved the primitive index of a method from the
compiled method header to the beginning of the compiled
method’s bytecode (these two zones are shown in Figure 1).
The primitive call is now a double extended bytecode, with
the two argument bytes encoding the primitive number. The
first bit of the first byte argument determines if the primi-
tive is inlined or not. If the primitive is not marked as in-
lined, it automatically fails if it is not the first bytecode of
the method. This change does not slow down the virtual ma-
chine due to the different method caches. Inlined primitives
cannot fail, therefore one needs to be very careful while in-
lining a primitive to properly handle inlined primitive failure
and its fall back code with control flow operations (for ex-
ample, a flag on top of stack can force the execution flow to
jump on a specific branch that handles the fall back code of
the inlined primitive).

Byte number F9 + next byte (> 127) + next byte
Name callPrimitive
Bit values 11111001 0iiiiiii jjjjjjjj
Explanation call primitive at iiiiiii+(jjjjjjjj*FF)

fails if not the first method’s bytecode
On success: triggers a hard return
On failure: executes fallback code

Byte number F9 + next byte (<= 127) + next byte
Name callInlinedPrimitive
Bit values 11111001 1iiiiiii jjjjjjjj
Explanation call inlined primitive at iiiiiii+(jjjjjjjj*FF)

Inlined primitives cannot fail,
may be unsafe, never triggers a return,
may or may not push a value on stack

To encode the primitives, we noticed that we needed to
support at least 1000 primitives and 1000 inlined primitives
to support all the operations we might want to implement in
the next decade. We could have made CallPrimitive a single
extended bytecode taking an extension according to the ex-
tendable instruction model introduced in the last paragraph,
but that would complicate the VM’s determination of the
primitive number and the primitive error code store since the
extension, being optional, would make the sequence variable
length. So we decided to make it a double extended byte-
code. Therefore the new representation of primitive allows
32768 primitives and 32768 inlined primitives which is more
than enough.
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Some of the inlined primitives are unsafe, which means
that if you send them on incorrect objects you may corrupt
the memory or crash the virtual machine. However, the opti-
mizer can guarantee at compile-time that this cannot happen.
The first unsafe operations we want to support are direct ac-
cess to the field of an objects to optimize indexable objects
access by removing bounds checks.

Access to non receiver instance variable. Instance vari-
able access in Smalltalk does not require any specific checks,
because an object cannot access any instance variable of any
other objects than itself, and at compilation time the struc-
ture of the receiver is well-known. In 2008, for our efficient
BlockClosure implementation, we added an extra bytecode
to quickly allocate an Array on the heap and quickly access
to its fields to be able to efficiently share some variables be-
tween a closure and its enclosing environment. These op-
erations were also unchecked both for performance and be-
cause you know the size of the array at compilation time.
We reused these accessing bytecodes to access the instance
variables of non receiver objects.

Extendable. The new bytecode set has 15 available byte-
codes. This allows us to extend it easily and efficiently.

Maximum number of literals increased. The maximum
number of literal extension is quite specific. To overcome
the previous limitation, we needed two changes. Firstly, we
reused the free bits in the compiled method header from the
primitive index to encode more literals. Secondly, we al-
lowed the literal access bytecode to take an extension, al-
lowing the bytecode to encode access to literals at a position
over 255 in the literal frame of the compiled method.

4.2 Generic features
Overall bytecode size. In the Pharo 3.0 release (version
30848), we installed the new compiler back-end for the new
bytecode set support. The system reached then 75190 com-
piled methods (closures are included in compiled methods).
As explained in Section 2.2, the new bytecode set impacts
only the compiled method header and the bytecode zone of
a compiled method. However, the compiled method header
has a fixed size of a word (4 bytes in 32 bits, 8 bytes in
64bits). All the bytecode zones of the compiled methods in
the image used to be encoded in 2,285,892 bytes with the
old bytecode set, and are now encoded in 1,960,187 bytes.
The new bytecode set is therefore more compact than the
old one by 14.2%. However, the difference of around 325kb
is hardly noticeable on typical Pharo application that are
around 20Mb.

Immediate objects compaction. Immediate objects are
now encoded in the bytecode instead of in the literal ar-
ray. An object in the literal array always uses a word, which
corresponds to 4 bytes in 32bits. Most immediate objects can
be encoded in a single byte, such as integer from 0 to 255,
or the 255 most common Characters. We use that property

to reduce the encoding size of most immediate objects. We
added two single extended bytecode to support the encoding
of SmallInteger and Character, the argument byte encoding
the immediate object instead of a literal in the literal frame.
These bytecodes support extension if they require extra bytes
to be encoded. We have also reserved a double extended
bytecode for SmallFloat, but we have not implemented it as
our 64bits VM version is not stable enough. Depending on
its memory manager and on its 64 bits or 32 bits form, Cog
has from 1 to 3 immediate objects: SmallInteger, Character
and SmallFloat. On the long term, all three will be always
used, this variable number of immediate objects being due
to the migration to the new Memory Manager Spur and to
64 bits.

Platform-independent. We have not introduced any plat-
form dependent instruction, so the new bytecode set remains
platform-independent.

Easy decoding. A massive improvement is related to the
bytecode decoding. The bytecodes are now arranged with
two simple rules:

• The bytecode are sorted by the number of bytes they
need to encode their functionality: single byte bytecode
are encoded between 0 and 223, extended bytecode are
encoded between 224 and 248, double extended bytecode
are encoded from 249 to 255.

• Within a number of byte categories, bytecodes are sorted
by their functionalities: push bytecode are next to each
other, send bytecodes are next to each others, ...

Easier closure decoding. A new bytecode was introduced
to encode the number of temporaries in closures. We now do
not need any more to walk over part of the closure bytecode
to find out the number of temporaries.

About backward compatibility. Some mainstream lan-
guage can hardly change their bytecode set. For example,
when Java added the extra bytecode for invokeDynamic [15],
the process to get it included in all virtual machines exe-
cuting the Java bytecode was really tedious, and they didn’t
even have to edit all the bytecode compilers because this
extra bytecode is provided for other languages on top of the
JVM and not for Java itself. However, the Cog VM clients
have two different production compilers. In addition, the
most widely used serialization framework of our clients,
Fuel[5], serialize the sources of a compiled method instead
of its bytecode to support debugging and code edition of
materialized methods in environments without decompil-
ers. Therefore, by changing the virtual machine and the two
compilers, we fixed most backward-compatibility issues.

4.3 Switching between bytecode sets to validate our
approach

Difficulties with offline converters. One of the main con-
cern, in a Smalltalk runtime, when implementing a new byte-
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code set, is how to switch a snapshot from one bytecode
set to another one. One solution is to implement an offline
converter, that can translate the compiled method of an im-
age from a bytecode set to another one. This solution has a
big disadvantage: as long as the bytecode set implementa-
tion both image-side with the compiler back-end and VM-
side with the interpreter and JIT front-end are not stable,
the Smalltalk runtime crashes almost immediately at start-
up and it is very hard to debug.

Multiple bytecode set support. When the Newspeak sup-
port was added to the Cog VM, the virtual machine was
improved to support multiple bytecode set in the same run-
time. In some Smalltalk virtual machines, such as the one of
Smalltalk/X and Visual Age, the support of multiple byte-
code set was implemented a while ago to be able to execute
both the smalltalk bytecode and the Java bytecode. Claus
Gittinger has worked on the Visual Age implementation and
helped for this Cog VM improvement.

We decided to use the multiple bytecode set feature and
we did not implement an offline converter. This approach has
a big advantage, we can debug our bytecode compiler back
end in Smalltalk on top of a VM that supports the old and
the new bytecode set.

Encoding support for multiple bytecode sets. The support
of multiple bytecode set is implemented part in the VM and
part in the compiled method header format. The sign bit of
the SmallInteger encoding the compiled method header is
used to mark the method as using one or the other bytecode
set, as shown in Figure 3. However, we discourage from us-
ing multiple bytecode set on top of the Cog VM for anything
else than image conversion from a bytecode set to another or
experiments. This is because different bytecode set have dif-
ferent limitations, and it may be that a method can be com-
piled in a bytecode set and not in another one. For example,
the number of literals is limited to 255 in the old bytecode
set and 65535 in the new one by assuming a CallPrimitive
bytecode. This means that a method with 500 literals can be
compiled n the new bytecode set but not in the old one.

Validation. Our bytecode set was validated by the imple-
mentation of a compiler back-end to generate the new byte-
code out of the source code, the implementation of the inter-
preter front-end and the implementation of the JIT compile
front-end. The whole infrastructure is running with the new
bytecode set with similar performance, validating the design.
This was easy as the compiler, the interpreter and the JIT
compiler were designed with an abstraction layer over the
bytecode set to easily change it. Moving an image from one
bytecode set to another one was also not very difficult with
the multi-bytecode set support feature of the VM.

0 x P a a a a t t t t t t f l l l l l l l l p p p p p p p p p 1

1 x a a a a t t t t t t f p l l l l l l l l l l l l l l l l 1
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1

(index 31) 1 bit: sign bit, 0 selects the old bytecode set (#signFlag)

(index 30) 1 bit: flag bit, ignored by the VM (#flag)

(index 18) 1 bit: whether a large frame size is needed (#frameSize)

(index 10) 8 bits: number of literals (#numLiterals)

(index 1) 9 bits: main part of primitive number (#primitive)

(index 0) 1 bit: small integer tag (#tag)

(index 29) 1 bit: high-bit of primitive number (#primitive)

(index 25) 4 bits: number of arguments to the method (#numArgs)

(index 19) 6 bits: number of temporary variables (#numTemps)

New hybrid compiled method header

1

x
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1

(index 31) 1 bit: sign bit, 1 selects the new bytecode set(#signFlag)

(index 30) 1 bit: flag bit, ignored by the VM (#flag)

(index 18) 1 bit: whether a large frame size is needed (#frameSize)

(index 17) 1 bit: has primitive (#hasPrimitive)

(index 1) 16 bits: number of literals (#numLiterals)

(index 0) 1 bit: small integer tag (#tag)

(index 29) 1 bit: unused

(index 25) 4 bits: number of arguments to the method (#numArgs)

(index 19) 6 bits: number of temporary variables (#numTemps)

Depending on the first bit, the new compiled method header 
is encoded in one of the two format described below.

Figure 3. The new hybrid compiled method header

5. Discussion
5.1 Compaction of message sends
To improve the compactness of the bytecode set, some
Smalltalk dialects as Visual Works have a specific byte-
code for common message send. This bytecode is a single
extended bytecode, the argument byte being the index of
the common selector in a common selector array. This way,
sends with common selectors are most of the time encoded
in 2 bytes instead of 5 bytes because the selector is not in the
literal frame, at the cost of an indirection array.

A similar feature is present in the old and new bytecode
set. A list of 16 arithmetic selectors and 16 common selec-
tor have a quick encoding form. Our representation could
have been extended to have this single extended bytecode,
so we would have many more selectors encoded in a com-
pact way. However, this approach has issues. For instance,
common selector are not always the same. Therefore, on a
regular basis, the team maintaining the programming lan-
guage needs to update this common selector array depend-
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ing on the new common selectors. This is problematic for
some tools, such as some serializer which needs to version
the serialized methods to know what common selector array
it needs to use for serialization and materialization. We kept
the exact same compact selectors from the old bytecode set
to the new one to avoid this kind of issue. In addition, we had
already reached our compaction goals, so we didn’t need to
add extra complexity for more compaction.

5.2 Register-based bytecode set
Our bytecode set is stack based. This design date from
the time where there were both register based and stack
based CPU. However, modern common CPU are now all
register-based, so one can wonder if a register-based byte-
code set may not be better. At Google, the Dalvik VM team
chose to rely on a register-based bytecode for their Android
applications[4].

We didn’t move to a register-based bytecode for differ-
ent reasons. The main reason is that to generate register-
based bytecodes, you need to give to the compiler the num-
ber of available registers. This generates extra complexity
when running the application on different platforms which
may have a different number of general purpose registers.
For example, on our targets, intel x86 has 8 general purpose
registers whereas intel x86_64 has 16 general purpose reg-
isters. Moving from one architecture to another one requires
to loose performance by using less registers than available,
to recompile all the code base with the new number of gen-
eral purpose registers or to have a non trivial mapping from
a limited number of register to an extended one in the JIT
compiler.

5.3 Threaded FFI
The Cog VM now starts to support a threaded foreign func-
tion interface (FFI) to be able to call C function without
blocking the virtual machine execution. The current process
implementation requires the user to fetch a global variable
and to execute a message send to access the current process.
This implementation was good enough but does not scale for
the new multithreaded FFI. Therefore, we are considering an
extra bytecode to have a direct access on the active process.

We are not sure exactly if this bytecode will be used
and how. The original idea was to extend the language with
an extra reserved keyword, thisProcess, which will push
on the stack the active process the same way the active
context is pushed with the reserved keyword thisContext.
But adding an extra reserved keyword adds extra constraints
to the language, so we need to study other solutions.

6. Related Works
6.1 Bytecode and primitive operations
The main difference between most bytecode sets and a
Smalltalk bytecode set is that we do not encode any prim-
itive operations in the bytecode. For example, addition is

implemented as the message send named "+", and can be
sent to any Object in the system. Integer addition will be
performed only if the receiver is a SmallInteger. However,
there are no integer addition encoded in the bytecode set that
requires the operands to be SmallIntegers. Classic bytecode
sets, such as the Java one[12], encodes primitive operations.
For example the operation iadd in Java expects both operands
to be Integers. All Smalltalk instructions expect objects of
any type.

With the new bytecode set, we added encoding for inlined
primitives at bytecode level, which includes typed opera-
tions. However, this encoding will only be used only by the
runtime optimizer or very specific low-level tool such as an
ABI compiler, and is not present by default in the Smalltalk
semantics.

6.2 Bytecode set with superoperators
Several teams designed a bytecode set with superoperators to
optimize the interpreter speed[3, 8, 13]. Superoperators are
virtual machine operations automatically synthesized from
smaller operations to avoid costly per-operation overheads.
This is typically done statically at compile-time. The com-
piler detects common bytecode patterns and then extends
the bytecode set with superoperators performing the com-
mon patterns. For an interpreter, this technique drastically
improves the performance by reducing the overhead of byte-
code fetching. However, in our case we would need to adapt
many in-image tools, as well as the interpreter and the JIT to
support it. In addition, this optimization speeds up only the
interpreter, which is in most case not performance critical
as our VM heavily relies on the JIT for performance. So we
concluded that this optimization would cost too much time
to implement compared to its benefits.

6.3 Bytecode extensions
To add infinite argument values to our argument bytecodes,
we added the extension prefix bytecodes in the new bytecode
set as explained in Section 4.1. We designed the extension
this way to be able to encode one instruction per bytecode
(only the argument is variable) and because we needed a
limited number of different instructions.

Other systems have needed many more instructions, typ-
ically more than 255 which is the maximum number of dif-
ferent instructions you can encode in a byte. An example is
the Z80 CPU bytecode[16] which needed many graphical in-
structions (the Z80 is the processor of the GameBoy and the
SuperNintendo). In this case, they decided to use bytecode
prefix to indicate to the processor to fetch the next bytecode
in another bytecode table encoding other instructions. This
is a convenient trick when you want an important number of
instructions, but as we have much less different instructions
that 255 in our virtual machine, we felt the extra complexity
of this encoding didn’t worth it.
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6.4 Visual Works bytecode set
The Cog virtual machine is very different from the Visual-
Works VM. However, they both run Smalltalk runtime, so
the comparison is interesting.

BlockClosure bytecodes. One difference is that Visual-
Works has another model to activate BlockClosure. When
a BlockClosure is activated, it is present in the receiver slot
of the context, because the BlockClosure received the block
activation message. We instead have two fields in a context,
one for the method activation’s receiver and one for the clo-
sure. VisualWorks’ model seems very pure and cleaner for
the user. However, in term of the bytecode set, it means that
accessing the receiver or the receiver fields in method has to
be encoded differently between a method and a BlockClo-
sure, because in one case it access the receiver of the active
context whereas in the other case it access a variable from
the lexically enclosed environment. In our implementation,
the receiver slot of a BlockClosure context has the receiver
of the homeContext, therefore accessing the receiver and the
receiver’s fields is the same whichever activation you are.
Both implementation has pros and cons. We considered the
other approach, but we preferred to simplify the virtual ma-
chine implementation at the cost of complicating a bit the
model for the end user.

Loop encoding. Another difference is the support in the
VisualWorks bytecode set to encode the beginning of a loop.
This is convenient to be able in the JIT to generate native
code in a single pass. However, loops are not very frequent
in Smalltalk dialects: 5% of the compiled methods have a
loop in the Pharo 3.0 release image and adding in our JIT
implementation some code to handle loops didn’t increase a
lot the JIT complexity, therefore we preferred no to introduce
this bytecode.

Common selector array. VisualWorks features a common
selector array as it is described in Section 5.1. We didn’t
choose to add that in the Cog VM as explained in this
subsection.

Non immediate entries in machine code. VisualWorks has
support for non-immediate entries in machine code methods.
This means that if you can guarantee that an object is not an
immediate object, i.e., not a Character, a SmallInteger nor a
SmallFloat, you can speed up monomorphic sends sites by
targeting the method after the immediate entry. This is en-
coded in the bytecode with a specific send targeting the non-
immediate entry in the machine code. This implementation
leads to lots of complication, such as if the user change a
temporary variable in the debugger leading to an immediate
object being sent a message send with a non immediate en-
try, as well as VM-side complication as we needed to add an
extra entry in the native methods, aside from the class check
entry and unchecked entry.

7. Future work and Conclusion
The reason why we needed a new bytecode set was to be able
to implement a runtime optimizer in the JIT compiler to op-
timize methods in a bytecode to bytecode fashion. This op-
timizer will therefore have some similarities with Soot[14],
the Java bytecode to bytecode optimizer, but will be used at
runtime and not statically. As the bytecode set is now ready,
one needs to design and implement the runtime optimizer.

Reportedly, it is very difficult to produce correct mar-
shaling code for FFI calls on some architectures, especially
on x86_64bits[10], which is now very common. Generating
marshaling code in the virtual machine is tedious, as debug-
ging the virtual machine has always been much more com-
plex than debugging high level languages, even with very
good dedicated tools. One could implement the marshaling
code of FFI calls by generating compiled methods encoding
low level instructions with the unsafe operations of the new
bytecode set in order to simplify this process.

In this paper, we showed how we designed a bytecode set
suitable for runtime bytecode to bytecode optimizations for
the Cog VM and its Smalltalk clients.

This new bytecode set encodes an extendable set of un-
safe operations to provide information to the JIT compiler
for producing better machine code, encodes primitives in a
way the optimizer can inline them, has many available byte-
codes to be easily extended and fixes the old bytecode set
issues we described.
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Abstract
Dynamically typed languages promote flexibility and agile
programming. Still, their lack of type information hampers
program understanding and limits the possibilities of pro-
gramming tools such as automatic refactorings, automated
testing framework, and program navigation. In this paper
we present an extensible constraint-based type inference al-
gorithm for object-oriented dynamic languages, focused on
providing type information which is useful for program-
ming tools. The algorithm is able to infer types for small
industrial-like programs, including advanced features like
blocks and generic types. Although it is still an early ver-
sion, its highly extensible and configurable structure make
our solution a useful test bench for further investigation.

Categories and Subject Descriptors F-3.3 [Logics and
meanings of programs]: Studies of Program Constructs

General Terms type inference, dynamic languages, con-
crete types, abstract types

Keywords dynamic languages, type inference, ide, tools,
automatic refactorings, type annotations, Smalltalk, Pharo.

1. Introduction
Dynamically-typed languages have many advantages, such
as a strong flexibility, reduced development time and code
size [Tra09]. Still their lack of type information hampers
program understanding and limits the possibilities of pro-
gramming tools such as an automated testing framework

[Copyright notice will appear here once ’preprint’ option is removed.]

[Ahm13, GKS05], program navigation and refactorings
[Opd92] or smart suggestions [RL13]. In addition type in-
formation improves programmer understanding by showing
method parameter type, or the messages that can safely be
sent to a variable. Such properties are important when a pro-
grammer should join in an existing team with a large code
base to maintain. The same difficulties appear when learn-
ing how to use a new API. Types provide an important con-
ceptual framework for the programmer, useful for program
design, maintenance and understanding [Bra04].

There are many different approaches (such as type in-
ferencing [Suz81, GJ90, Unt12, HPHf11, OPSb92] or grad-
ual typing [ACF+13]) to provide static type information to
dynamic languages. However, industrial programming envi-
ronments for object-oriented dynamically-typed languages
take little or no advantage of these ideas. One of the causes
for this is that frequently these approaches have somewhat
limited applicability on industrial programming, because
they work on a limited version of a general purpose program-
ming language [Gar01, SS04] or even define their own lan-
guage specifically for that purpose [PS91, Hen94, OPSb92].
With Gradual Typing, other approaches propose to mod-
ify the language semantics and to add type annotations to
the language itself [Gra89, ST07, WB10]. In addition many
solutions are partial [Suz81, PS91] and do not cover com-
plex part of the language such as closures. Finally there are
approaches which are successful for program optimisation
and delivery, but its performance would be unacceptable
for interactive uses such as automatic refactorings and code
completion [Age96].

The programming environment chosen for this develop-
ment is Pharo1. Pharo is an Open Source programming lan-
guage and environment. It is inspired in Smalltalk and it is
used in many industrial applications.

1 http://pharo.org/
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The objective of this work is to create a pluggable type
system [Bra04] which can improve a programming environ-
ment by feeding the programming tools with type informa-
tion. Our main contributions are:
• a prototype implementation of an algorithm which com-

putes type information for an existing Pharo program,
supporting some of its most complex features, like block
closure and generic data types,

• a strategy for combining both concrete and abstract
types,

• a modular, configurable and extensible algorithm which
provides a framework for future analysis and, for exam-
ple, tune it alternatively for better performance or preci-
sion.

The rest of this paper is structured as follows. In Section 2
we present the problems arising from the lack of type infor-
mation in dynamic languages. Section 3 proposes an infer-
ence algorithm to get this information from an existing code
base without modifying it, also explaining how the different
type variables and constraints are built and how they interact.
Section 4 explains how we address some advanced features:
blocks and generic data types. In Section 5 we show a small
example of the type information that can be obtained using
our algorithm on a small but non-trivial program. Section
6 analyses the pros and cons of our solution, while Section
7 compares our proposal with other type inference alterna-
tives. Finally, we summarize our contributions in Section 8,
along with some possible lines of further work derived from
this initial ideas.

2. The Challenge of Lack of Type
Information

Type information can be useful to improve programming en-
vironments (IDEs). For example, an automatic method re-
name tool could use type information to select more pre-
cisely the message sends that should be updated when a
method is renamed. Also type information can be used to
show the programmer a list of messages that can be sent to a
variable or what kind of objects a method expects to receive
as parameter. Moreover, code navigation can be improved
for example if the IDE can provide a more acurate set of the
possible receivers of a message.

In several languages, the programmer is forced to provide
type information, for example associating each variable with
a type annotation. In these languages, static type information
is available and IDEs can take advantage of it. Dynamically-
typed languages such as Pharo, Javascript or Ruby allow
the programmer to avoid type annotations. This simplifies
prototyping and modelling, albeit sometimes limiting the
power of some programming tools.

A type inferer is a tool that automatically computes types
for some part of a program which lacks type annotations.
Statically typed languages such as Haskell or ML have a

large experience with type inference [Hud89]. However in
those languages the type system is integrated with the lan-
guage, i.e., we are unable to run a program with a type error.
It is a much more difficult task to apply type inference to a
program written with no notion of typing, which is the case
in object-oriented dynamically typed languages.

Dynamic object-oriented languages pose several difficult
challenges to type inference. Subtype polymorphism allows
a variable to hold objects of different types (and not related
types). For this reason, when a message is sent to an object,
it is not simple to see which method is going to be executed.
Also, for container objects such as collections it is not suffi-
cient to know its type (e.g., Set or OrderedCollection), instead
we need to have information about the type of its elements.
This capability of an object to be instantiated using differ-
ent types for its instance variables is known as generic data
types. [CW85]

The purpose of this work is to build a type-inferer system
that can be practically used to improve programming tools,
such as automatic refactorings, code navigation and smart
suggestions. To achieve this objective, a type-system should
comply to the following:

• It should work on existing real-world programs, i.e., we
may not restrict the use of the language or create an ad-
hoc language that fits the needs of our type-system. Also,
we should avoid requiring the programmer to add type
annotations to its program in order to use our tools.

• The type-inferer should be responsive, i.e., it should be
able to run while a user is coding, for example each
time he compiles a method. An execution time of even
a few seconds is already unacceptable. To fulfill this
goal, we think that a type system should be able to work
incrementally, i.e., when a method is modified, rebuild
type information only for that method and re-use all the
information computed for the rest of the system.

On the other hand, since our goal is restricted to feed tools
with type information, we do not intend to detect type errors.

A usual purpose of a type system is to detect program-
ming errors [Mil78]. Though, dynamic language programs
frequently make use of programming idioms that are be very
hard or even impossible to type-check, as those described
in the work of Allende et al., [ACF+13], such as the use
of the same local variable to hold non related objects, or
any use of meta programming techniques. Having to avoid
those idioms to conform to a static type system, would cut
off a significant portion of the sense of a dynamic language.
Therefore, dynamically typed language programmers prefer
other tools to detect programming errors, such as unit testing
[GNDc04, Eck03, Mar03].

For these reasons, our solution does not intend to detect
errors in the program under analysis. Instead, we assume
it correct and just try to infer type information to help the
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programmer understand the program or modify it with more
confidence.

Dynamically-typed languages do not provide type infor-
mation for their core libraries. Since such libraries are just
programs expressed in the same language, it is possible to in-
fer their types with the same tools used to analyse individual
programs. Only primitives, which tend to be scarce in most
dynamic languages, require special inferencing handling be-
cause they often represent the connection to external world
such as C libraries or plugins. However, because of their
complexity and generality, the analysis of these libraries of-
ten will consume most of the time of a type-inferer. Since
application programmers seldom modify core libraries, we
choose to consider them also as primitives and feed the type-
inferer with their types [Gar01].

Type systems can be characterized from concrete to ab-
stract [Age96]. Abstract types specify an object’s interface,
while concrete types describe its implementation. Abstract
types can be modelled as a set of messages an object should
understands. Concrete types are usually modelled as sets
of concrete classes. Most type-inference systems on object-
oriented dynamic languages focus on concrete types, be-
cause they are useful for some purposes such as program
optimisation and delivery. Also they are simpler to under-
stand to programmers without a heavy background on type
systems. However, concrete types cannot express the type
of a method parameter whithout knowing all of its clients
(closed-world assumption). A somewhat novel feature of our
approach is to combine concrete and abstract type informa-
tion.

3. Basic Algorithm
Our solution implements a type inference algorithm based in
constraints generation which combines concrete and abstract
types. It associates each expression (in our implementation
each AST2 node) with a type variable, it analyses the code
gathering constraints for each type variable and associates
each type variable with possible types so that all constraints
are meet.

The constraint solving algorithm is divided into indepen-
dent tasks which are related through a workflow. The al-
gorithm is extensible and configurable, new tasks can be
created and the workflow can be changed. In this way, our
solution provides both a useful tool for type inference re-
search and a configurable framework adaptable to different
purposes.

The algorithm is iterative, i.e., each task is executed mul-
tiple times and each time it may produce new information,
based on the information obtained by other tasks or by a pre-
vious execution of the same task. After a task is executed, the
workflow decides which task to execute next, depending on
if the previous task was successful in obtaining more type
information or not.
2 Abstract Syntax Tree

Also the solution is capable of handling generic data
types and inferring type information on independent parts of
the code, allowing the use of unbound parameters in the root
analysed method; in other words it can infer type informa-
tion in a program without a main method. This is achieved
by the combined use of concrete and abstract types. These
two sources of information provides a better understanding
of the analysed programs.

The input of our solution is one or more initial methods,
as it was said, these methods can have unbound parameters.
The algorithm will automatically select which other meth-
ods have to be analysed. The answer of our algorithm is a
set of restrictions gathered into type variables, which are as-
sociated to each expression in the program. The restrictions
specify the possible types of the values of the expressions,
using both concrete and abstract types. We name the set of
known classes that comply with those restrictions the result
of a type variable.

Our solution allows one to manually specify the types of
some methods, thus avoiding to infer their type information.
In fact a few of those type specifications are necessary for
the algorithm to work. This is the case for

• Virtual machine primitives
• Methods of generic classes, such as Collections (cf. Sec-

tion 4.2)

However, type specifications are also useful to set bound-
aries to type inference. For example, an application devel-
oper could take advantage of having type specifications for
the language core and other libraries he uses, as this would
shorten inference time. Also type specifications can improve
precision in cases where the algorithm cannot infer the most
precise type.

3.1 Type Variables and Constraints
As it was said previously, each expression has a type variable
associated with it. For example, for the expression: z := x
addTo: y, the following type variables are generated: tx, ty,
tz and t(x addTo: y). For each variable in the code, we generate a
single type variable which is shared among all occurences of
the variable. Pharo has several types of variables including
class variables, instance variables, local variables, method
parameters and block parameters. Also a type variable is
created for the return type of each method.

The different type variables are related by constraints.
There are only two types of constraints: subtype constraints
and receive message constraints.

3.1.1 Subtype constraints.
A subtype constraint “tx is subtype of ty”, written tx � ty

establishes that

1. If we know that C is a valid result for the subtype tx, then
C should be also a valid result for the supertype ty.
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2. If we know that the result of the supertype tx has to
understand message #m1, then the result of the subtype
ty also has to understand #m1

Therefore, these constraints can be used to propagate type
information. Each time we obtain some information about a
type variable, we can use it to deduce something about its
subtypes or supertypes.

It is worth mentioning that subtyping is a relationship be-
tween type variables and it does not have a direct relation-
ship to inheritance. Subtype constraints are generated in the
following cases:
• Assignment: a := b implies that tb � ta.
• Return: If we find the expression ˆa in the method #m

of class C, we can deduce ta � t(C�#m."), where t(C�#m.")

is the type variable associated to the return type of the
method.

• Parameter passing From the expression obj m: a and for
each class C that is a valid result for tobj we can deduce
that ta � t(C�#m:.1), where t(C�#m:.1) is the type variable
associated to the first formal parameter of the method #m:
in the class C

The first two cases occur during the analysis of the AST (cf.
Section 3.3), while the last one is a bit more complex and
therefore it can only derived by the constraint solving tasks
(cf. Section 3.3).

3.1.2 Receive message constraint
A receive message constraint establishes that any valid result
of a type variable has to understand the specified message.
Moreover, it establishes relationships to other type variables
which will be related to the arguments and the result type of
the messages. For example, from the expression x addTo: y
we deduce:

tx should understand #addTo: with type ty ! t(x addTo: y)

This means not only restricting the possible results for tx

but also associating the variable ty to the argument of the
message and the variable t(x addTo: y) to its return type. This
associations are not useful at this point, but they will become
relevant once we assign tx to a concrete type (or many) and
hence #addTo: to a specific method (or many).

3.2 Type Information
All the type information collected by the algorithm is related
to a type variable. For each type variable (and hence for each
AST Node) we collect:
• The set with all the type variables which are direct sub-

types of this variable.
• The set with all the type variables which are direct super-

types of this variable.
• The set of messages that the types assigned to this type

variable must understand msgs(tx).

• The minimal set of concrete types that must fit in the type
variable: min(tx).

• The maximal set of concrete types that could fit in the
type variable: max(tx).

Subtypes and supertypes express relationships between
type variables and are created by the constraint generation
task (cf. Section 3.1). They will allow to propagate type in-
formation between type variables during constraint solving.
For example if we know that tx � ty and tx can be of type
SmallInteger, then ty must also be able to hold SmallInteger’s.
Following the relationship in the opposite way, if ty must
understand #addTo:, then its subtype tx must also understand
it.

The set of messages is also created by the constraint
generation task. Also, each message send is related to other
type variables representing the arguments and the return
value of this message send.

The minimal set of concrete types is a set of Pharo
classes. A class C is included in min(tx) each time the al-
gorithm can find evidence that an instance of C can be the
result of evaluating the AST Node related to tx. Examples of
evidence are:
• Literal values. For example from the expression x := 37

follows that SmallInteger 2 min(tx).
• Primitive return types. For example from x := OrderedCol-

lection basicNew follows that OrderedCollection 2 min(tx).
• Propagation due to subtype/supertype relationships. For

example, from this sequence of assignments: x := 37. y
:= x, we know that SmallInteger 2 min(tx) (from the first
assignment) and tx � ty (from the second one). Then we
can deduce that SmallInteger 2 ty

The maximal set of concrete types of a type variable tx is
the set of all Pharo classes that could possibly be the result
of evaluating the AST node related to tx. If a class C is not
included in max(tx), it is because we have evidence that the
related AST node could never be evaluated to an instance
of C without producing an error. There are three ways of
compute max(tx):
• Primitive parameter types. Primitives usually can accept

only a limited number of classes as parameters, or even a
single one.

• Message sends. If msgs(tx) = {#add:, #remove: } then
max(tx) is the set of all classes that understand both #add:
and #remove:.

• Propagation due to subtype/supertype relationships. For
example, ty � tx and max(tx) = {A, B }, then max(ty) ✓
{A, B }.

In our algorithm the minimal set starts empty and is
enlarged as the algorithm finds new evidence. On the other
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hand, the maximal set starts containing all the classes in the
image3 and it is reduced as the algorithm progresses. During
type inference always holds that min(tx) ✓ max(tx). Since
min(tx) can only grow and max(tx) can only shrink, the final
type computed will be between those two limits.

3.3 Tasks
Our algorithm is divided in 6 independent tasks:

• Generate type variables and constraints for a method.
• Propagate minimal set of concrete types.
• Link a message-send with a method.
• Propagate maximal types.
• Compute max concrete types from message sends.
• Infer a minimal type from a singleton maximal type.

The following sections explain each of these tasks.

Constraint generation. This task has the responsibility of
creating the type variables for a method. For each method
that has to be analysed, it can proceed in two ways. If there
is a type specification for that method, it generates only type
variables for its formal parameters and return type, with
fixed types. If a type is not present (which is the general
case), the task walks through the AST of the method gener-
ating a type variable for each expression in the method. In
this case, while traversing the AST, it also collects the sub-
type relationships between type variables, and each message
sent to an expression is translated intro a constraint applied
to the associated type variable, as described in Section 3.1.

This is the starting point of the algorithm and the only
mandatory task. Since the input to the algorithm is a set
of methods, the first execution of this will compute type
variables and constraints for each of these input methods.
As other tasks are executed, the algorithm will discover other
methods that have to be analysed. These methods will not be
analysed immediately but enqueued. The workflow has the
resposibility of deciding when to re-execute this task.

Propagate Minimal Set of Concrete Types. The main ob-
jective of this task is the propagation of the minimal types
detected in previous tasks. For each pair of type variables tx

and ty such that tx � ty, we have to update min(ty) so that:

min(ty) := min(ty) [ min(tx)

i.e., the minimal type set of the supertype ty is enlarged to
include the minimal type set of the subtype tx.

For efficiency reasons, the algorithm keeps track of which
concrete types have already been propagated. By doing so,
in each execution of the task we also are able to tell if new
information has been discovered or not, which is necessary
for the workflow to decide which task to run next.

3 This is only from a theoretical poin of view. For efficiency reasons, in the
actual implementation the set of all classes is never computed.

Link a message sent with a method. The main objective
of this task is to link the type variables associated to a
message-send with the type information associated to a spe-
cific method. To be able to do this, we have to infer the pos-
sible method that could be executed as response to the mes-
sage send. Those methods are looked up in the classes from
the minimal type set of the receiver. Thus, for each message-
send x m: y and for each C 2 min(tx), we look up the type
variables for the formal parameters and return type of the
method C�#m and create the following constraints:

ty � t(C�#m.1) t(C�#m.") � t(x m: y)

The use of type variables allows us to create these subtype
relationships without having actual type information for the
method C�#m. If the type information is not available, we
only create the type variables and enqueue the method for
being processed by the constraint generation task (cf. Section
3.3).

As in the previous task, for each message-send, the algo-
rithm keeps track of the concrete types of the receiver for
which we already generated constraints, avoiding to process
the same method twice for the same message-send and al-
lowing the task to inform the workflow if it has make some
progress.

Propagate Minimal Set of Concrete Types. This task
propagates the information of the maximal types set is prop-
agated through in a similar way as explained in Section 3.3.
Still, there are two big differences in the operation of both
tasks.

First, the nature of the maximal types set mandates to
propagate the information in the opposite direction, i.e., from
supertypes to subtypes. If tx � ty this means that the final
result of tx has to be included in the final result of ty. Since
max(tx) is an upper limit of the final result of tx, it also works
as un upper limit ty.

Second, as we said before, the initial maximal types set
contains all the classes in the image and it shrinks as we ob-
tain more information. Therefore, the propagation process
leaves only the concrete types present in both the type vari-
able and its supertype:

max(tx) := max(tx) \ max(ty)

Compute max concrete types from message sends. In this
task the information of the maximal concrete types are fil-
tered using the messages sent to the type variable. Only the
concrete types which implement all the messages are kept in
the maximal set.

Infer a minimal type from a singleton maximal type. This
is the only task in the current implementation which com-
bines information from the minimal and maximal sets. When
we find out that the maximal types set of a type variable has
only one concrete type (max(tx) = {C }), then the minimal
types set should contain exactly the same type.

min(tx) := max(tx)
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3.4 Coordination of tasks
The tasks of the algorithm are coordinated by a workflow.
The workflow is organized in run levels, each run level has
one or more tasks to execute. The workflow executes the
run levels in a sequential way, deciding which run level
to execute next depending on if the previous run level has
produced new information or not.

The workflow is fully configurable, allowing to create
new tasks, remove some of the current tasks and change how
the tasks are organized run levels. Having a configurable
workflow allows to use our algorithm as a testing bench
for different configurations, comparing their performance,
accuracy and fitness for different purposes. Also, different
configurations could be useful for different purposes. For
example, a smart suggestions tool requires a very fast type
inferer, even at the cost of loosing precision, while a type
inferer used for compiler optimization can be allowed to run
for hours but has to be extremely precise because a wrong
inference would make the program fail at runtime.

So far we have been working with single workflow con-
figuration, which proved to be successful in typing some
small but not trivial programs (cf. Section 5). This config-
uration includes all the 6 tasks described in Section 3.3, or-
ganized as described in Figure 1. In the figure each node
represents a run level and the numbers in the nodes repre-
sent tasks. Each node has two outcoming links. The dotted
link shows the path to be followed by the workflow in the
case that the run level is successful in producing new type
information. The other one is the path to follow if the run
level does not find new information.

1. Generate constraints type variables for a new method.
2. Propagate minimal types.
3. Link a message send with a method.
4. Propagate maximal types.
5. Compute max concrete types from message sends.
6. Infer a minimal type from a singleton maximal type.

Figure 1. A possible workflow configuration

4. Advanced Features
One of the distinctive feature of our solution is the capability
of handling blocks (also known as closures) and generic
data types. Generic data types are specially useful for typing
collection objects.

4.1 Blocks
A block in our type system is represented by a special type
variable, which acts as a composite [GHJV95] type variable.

Its component type variables are: the type variable associ-
ated to the return value of the block, and each of the type
variables related to the parameters of the block, if the block
has any.

Block type variables can be introduced either by the pres-
ence of a block literal in the AST or by a type specification.
Also, when a block type variable gets involved in a subtype
constraint, the other type variable is also converted to a block
type variable if necessary.

When a subtype relationship is established between two
block type variables, the subtyping relationship is propa-
gated to the component variables. For example, in the fol-
lowing use of a block:

x := [ :a | a msg ] value: y.

In this example, some of the generated type variables are:
t([ :a | a msg ]), t([ :a | a msg ]."), ta, tx, ty. And the following con-
straints are generated between them:

•
ty � ta.

•
t([ :a | a msg ].") � tx

• #msg 2 msgs(ta)

4.2 Generic Data Types
Our type system can handle generic data types, which are
also represented by special type variables. Generic type vari-
ables have a subsidiary type variable. For example, if the
type variable tx is infered to be an OrderedCollection (which
is a generic data type), a subsidiary variable t(x.↵) is created.
The subsidiary type variable will be used to compute the type
of the elements of the collection.

Generic data types are introduced by type specifications,
the current algorithm does no attempt to infer that a class
requires to be handled as a generic data type. Still, once
introduced, generic data types can be propagated through
subtype constraints. As with blocks, each time a generic type
variable gets involved in a subtype constraint, the related
variable is converted to a generic one, if necessary. Block
type variables cannot be converted into generic data type
variables or viceversa. If such situation arises, we consider it
an error in the program and inform it to the user. Also, a type
variable’s minimal type set cannot contain both collections
and other non-generic concrete types.

In our system, generic data types are invariant, i.e., if tx

� ty, then both subsidiary variables have to be equal: t(x.↵) =
t(y.↵). This resembles the type system of several statically-
typed object-oriented languages with generic data types,
such as Java [BOSW98]. Generic data types are always at
class level, and not at method level.

The following example shows the constraints generated
in the presence of generic data types:

a := OrderedCollection new.
a add:x.
y := a any.
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Some of the generated type variables are ta, t(a.↵), tx and ty.
And the interesting constraints generated are:

• OrderedCollection 2 min(ta).
•
tx � t(a.↵) because the type of the parameter of #add: is a
subtype of the elements in the collection.

•
t(a.↵) � ty because the return type of #any:4 is a subtype
of the type of y.

4.3 Mixing Collections and Blocks
Since in Pharo, iterators are fully integrated in the language,
collections are often combined with blocks. This combina-
tion provides some of the most challenging situations for a
type inferer, but also very important to handle. Since the use
of these combination is so frequent, a type inferer that is not
able to handle it will be of little use for industrial programs.
The following example shows the constraints that are gener-
ated in these situations:

| col r |
col := OrderedCollection new.
col add: anObject.
r := col sum: [ :e | e msg ].

In order to infer types for this piece of code, the algo-
rithm will make use of the type specification associated to
the methods #add: and #sum: of class OrderedCollection. To
specify a generic data type we use a symbol instead of a con-
crete type, for example ↵, which will be associated to the
subsidiary variable of the container type. So, the methods
are specified as follows:

• #add: receives ↵5.
• #sum: receives a block with type ↵! SmallInteger and

returns SmallInteger.

With this information, the algorithm can infer the informa-
tion in Table 1.

Type Variable Maximal Set Minimal Set Messages
tcol OrderedCollection #add:

#sum:

tanObject #msg

t(e mesg) SmallInteger

t(col.↵) #msg

tr SmallInteger

Table 1. Example combining collections and blocks

5. Example
In this section we will show a small example of the execution
of the inference algorithm. This example, even being an

4 Which returns any element of the collection
5 The return type is not of interest

Task >> initialize
subtasks := OrderedCollection new.

Task >> addSubtask: anObject
subtasks add: anObject

Task >> complexity: anObject
complexity := anObject

Task >> ownCost
^ complexity cost: self

Task >> totalCost
^ self ownCost +
(subtasks sum: [ :subtask | subtask totalCost ])

Figure 2. Code for the Task class.

Type Variable Maximal Set Minimal Set Messages
tsubtasks OrderedCollection #add:

tsubtasks.↵ Task Task1 #totalCost

t(Task�#totalCost.") SmallInteger3

tcomplexity MediumComplexity,
SmallComplexity,
HighComplexity2

#cost:

t(self ownCost) SmallInteger #+

Notes:
1. Task is the only implementor of #totalCost

2. The implementors of #cost:.

3. It is the result of adding two SmallInteger’s.

Table 2. Results of the Task class

small one, it is a clear example of real industrial code. It
is an implementation of a Composite Pattern [GHJV95].

The figure 2 presents the code of the Task class, from a
task management system. An object of this class is respon-
sible for the calculation of its own total cost. The cost of a
task depends on two things: his own cost and the sum of the
total costs of his subtasks. The own cost of a task is calcu-
lated by another object that understands the message #cost:
with a task as a parameter, implementing an abstract Strategy
pattern [GHJV95]. There are three classes which implement
#cost:, MediumComplexity, SmallComplexity and HighComplex-
ity. The task has two instance variables, #subtasks and #com-
plexity. Table 2 shows the most relevant information resulting
from analysing the Task class.

It is remarkable that the algorithm detects the type of the
elements inside subtasks. Once established that tsubtasks is an
OrderedCollection, we are able to take advantage of the type
specification provided to OrderedCollection�#sum:. There-
fore, the block has to be of type ↵ ! SmallInteger, where
↵ is the type of the elements of the collection and is associ-
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ated to the argument of the block (tsubtask). Given that tsubtask

has to understand #totalCost and the only class implementing
this method is Task, we deduce that min(tsubtasks.↵) = {Task}.

6. Discussion
One of the biggest challenges about infering types for object-
oriented dynamic languages is scaling to handle big pro-
grams. Our solution has been only tested in small programs
and an exhaustive analysis of its performance using more
benchmarks and different kinds of programs is still a pend-
ing task. However, we are working on four different strate-
gies to obtain acceptable execution times.

First, the possibility of specifying fixed types for core
classes and other reusable libraries, reduces the number of
methods to analyse and hence the number of type variables
and constraints to solve.

Second, our implementation allows for different config-
urations, creating new tasks or even changing the existent
ones. These capabilities can be exploded to regulate the rela-
tionship between precision and speed, increment the amount
of information generated and even design custom tasks for a
specific program.

Third, we are working on an incremental version of the
algorithm, i.e., which is able to handle method changes with-
out running the whole type inference process from scratch.
Since our intention of this work is to provide information
for interactive tools, our aim is to listen to announcements
regarding the method updates, discard only the type infor-
mation related to the old version of the method, and keep the
rest of the type information as input to the next execution of
the algorithm.

Finally, one frequent problem of constraint solving type
inferer is the amount of type variables that they generate,
both because of their size in memory and execution time
(since algorithms tend to grow exponentially on the amount
of type variables). The incremental version of the algorithm
will also cope with this problem, since after analysing a
method we will be able to keep only the type variables in the
method interface (i.e., formal parameters and return type)
discarding all other type variables which can be considered
internal to the method.

Other approaches have proposed to use type annotations
in order to have static type information. Type specifications
show several advantages over type annotations. Since type
specifications are not part of the code, the type system and
the tools do not affect the structure of the code or the way a
programmer works with it. In this way, our solution is ori-
ented by the idea of pluggable types [Bra04], which pro-
poses that the type information and the type system are not
an integral part of the language, but only optional tools.

Moreover, most of the type specifications are not neces-
sary for the algorithm to work. Instead, they are only a useful
tool to speed up the inference process, by avoiding to analyse
code that we are not intending to change. Is the programmer

intends to change a portion of the core library, he could sim-
ply remove type specifications for that portion. Also, some
type specifications can be the result of a previous execution
of the type inferer, i.e., we run the inference process on a
reusable library and save the inferred types to be used as in-
put when inferring types for a client of this library.

Our solution lacks of a formal model. The aim of this
work is to provide a tool for industrial use, that can deal
with real programs written in industrial languages and that is
integrated in industrial programming environments. There-
fore, our focus is to provide useful type information fast
enough to be used in interactive tools. This objective can
not be fulfilled if, in order to get a formal proof of sound-
ness, we would cut off some of the most interesting parts of
the language. We share this approach with renaming tool of
Unterholzner [Unt12].

Our solution is able to handle generic data types but
our approach can be limiting in some situations, we are
analysing the idea of adding more support to Polymorphic
Types: adding support to polymorphic messages, and detec-
tion of generic types developed by the programmer.

7. Related Work
To our knowledge, there are few type inference approaches
combining abstract and concrete type information. In this
regard, Graver [Gra89] proposed a type checking solution,
based in an open world assumption. The main difference
with our work, is that Graver’s solution requires type spec-
ifications for class-, instance- and global variables, while in
our solution this information is inferred.

Martin Unterholzner’s work [Unt12] shares with ours the
objective of using type inference to improve programming
tools. In his case type information is used to aid method
rename refactorings. To achieve his goal, he uses symbolic
evaluation of the AST generated from the source code. His
solution starts in a closed world context and then opens it
to gather more information. His solution is focused in pro-
viding information for the renaming tool he is presenting,
generating only the type information which is necessary for
this specific purpose. Therefore it is not clear the applicabil-
ity for use with other objectives.

Spoon and Shivers [SS04] have proposed an algorithm
called DDP which prunes subgoals by giving solutions that
are trivially true, reducing computation time at the cost of
reducing precision. Their solution put emphasis in the per-
formance and the scalability of the solution, but not in the
precision. Our solution works also with different goals and
tasks, but it does not use pruning. On the other hand our so-
lution provides a way of inferring the type of the variable
from the messages sent to it; in other words, we combine the
information produced by the concrete types and the informa-
tion from the abstract types.
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Haupt et al., [HPHf11] have proposed to gather type in-
formation by observing application code while it is running.
They claim to provide more fine-grained results than type
inference approaches. In this work the harvested types are
objects’ classes. The crucial difference with our work is that
our solution is based in a static analysis, while the solution
of Haupt et al., gather all the information from running the
tests. This approach needs to have running tests, and all the
inference is based only in these tested cases.

Wang and Smith [WS01] propose an extension to CPA
[Age95] which provides a way of handling generic data
types. Their solution is focused in the checking of downcasts
and it is highly coupled to Java Language.

Pluquet et al., proposed a solution named Fast Type Re-
construction [PMW09], which is based in the static analysis
of methods, but their solution only takes into account a small
amount of expressions: assignation to literals, arithmetic ex-
pressions, boolean expressions and instance creations. This
approach allows speeding up the solution but loses precision.
Our solution propagates the return type of any message sent;
providing more information about types.

Oxhoj et al., [OPSb92] present a solution that can han-
dle generic data types in the collection classes by using type
variables for all the expressions and solving their relation-
ships. However, their solution produces a high duplication
of type variables, classes and methods as any generic type
is duplicated for each use. For example, if there is a List of
Booleans and a List of Integers; the algorithms creates two
subclasses of List, one for each class of the elements.

8. Conclusion
In this work we proposed a practical solution for the lack
of type information in dynamic languages, which focuses
in providing useful information to be used in programming
tools such as automatic refactoring, program understanding,
program navigation and smart suggestions.

The solution provides an implementation for a real lan-
guage in industrial level environment, which allows to build
tools on top of it. The solution can be used as an external
tool, without affecting the normal work of the programmer.
Also, these ideas are applicable to other industrial level dy-
namic languages.

Regarding performance, we have promising results infer-
ing types for small programs and a testing bench for devel-
oping a responsive solution able to work on bigger programs.
Our solution lacks of a formal proof of soundness, but we do
not consider it a big drawback, given our objective.

One of the next steps in our research work is to add a
global analysis of the type variables. For example, if the
algorithm finds a local or instance variable with only one
assignment, we could establish a new constraint, stronger
than the subtype constraint that we are using now.

Also we intend to incorporate new tasks based on heuris-
tics. This tasks provide potential answer with a lesser per-

centage of precision. Moreover, heuristic tasks could make
use of fuzzy logic [ABCD65]. Heuristic tasks will be used in
cases when the more precise tasks are not succesfull, adding
them in a new run level. Still, other sequences of execution
can be explored, changing the way the tasks are combined
into different run levels.

Our solution can be used as a framework for developing
different type systems. These type systems can work like
plug-ins in a IDE. In this way the programmer can choose
the set of tools to use in a particular problem. Also, our
approach can be combined with other unrelated pluggable
type systems, providing complementary information about
the same program. As a result, the way different type sys-
tems and implementation cooperate and behave is an inter-
esting approach to study.
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Abstract

The goal of high-level low-level programming is to bring the
abstraction capabilities of high-level languages to the system
programming domain, such as virtual machines (VMs) and
language runtimes. However, existing solutions are bound
to compilation time and expose limited possibilities to be
changed at runtime and from language-side. They do not fit
well with fully reflective languages and environments.

We propose Benzo1, a lightweight framework for high-
level low-level programming that allows developers to gen-
erate and execute at runtime low-level code (assembly). It
promotes the implementation, and dynamic modification, of
system components with high-level language tools outper-
forming existing dynamic solutions.

Since Benzo is a general framework we choose three ap-
plications that cover an important range of the spectrum of
system programming for validating the infrastructure: a For-
eign Function Interface (FFI), primitives instrumentation
and a just-in-time bytecode compiler (JIT). With Benzo we
show that these typical VM-level components are feasible as
reflective language-side implementations. Due to its unique
combination of high-level reflection and low-level program-
ming, Benzo shows better performance for these three ap-
plications than the comparable high-level implementations.

Categories and Subject Descriptors D.3.3 [Program-
ming Language]: Language Constructs and Features; D.3.2
[Programming Language]: Language Classifications—Very
high-level languages

Keywords system programming, reflection, managed run-
time extensions, dynamic native code generation

1. Introduction

High-level low-level programming [16] encourages to use
high-level languages such as Java to build low-level execu-
tion infrastructures or to do system programming. Frampton
et al. present a framework that is biased towards a statically

1 The name Benzo originates from Benzocyclobuten which is an
organic glue used in wafer production.
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typed high-level language, taking strict security aspects into
account. It is successfully used in experimental high-level
self-hosted virtual machines (VMs) such as Jikes [3].

The results presented by Frampton et al. are inspiring for
high-level system programming developers. Their approach
promotes to tackle low-level system programming tasks with
the tools and abstractions of high-level languages. However,
the solution has certain limitations when applied to a dy-
namic and reflective context.

By the term “dynamic and reflective” we refer to com-
bined reflective capabilities for a language to inspect (in-
trospection) and change its own execution (intercession) at
runtime [24].

The most important limitation we found when approach-
ing dynamic high-level low-level programming attaining to
the existent solutions is the following:

It is not possible to generate ad-hoc native code (assem-
bly) at runtime and execute it dynamically.

We illustrate it with the following use case.

1.1 Use Case: Dynamic Primitive Instrumentation
To illustrate this limitation we take the example of dynam-
ically intercepting VM primitives. In most managed run-
times, VM primitives are used for essential tasks such as ob-
ject creation or provide fundamental functionality that can
not be obtained otherwise at language-side [17, page 52].

Already the simple example of measuring the time spent
in an essential primitive while executing a performance
critical task is di�cult to do e�ciently.

Reflective solutions at language-side could take advan-
tage of the intercession capabilities that allow changing or
augmenting almost any behavior at runtime. In practice,
this does not work for primitives. In addition, reflectively
measuring the duration of the time primitive itself will easily
cause meta-recursion. Hence in general reflective instrumen-
tation will not work on primitives used for the instrumen-
tation itself. Thus e�ciently instrumenting VM primitives
in a dynamic and reflective environment is not feasible in
many cases.

Naturally if we leave the high-level realm there are e�-
cient tools at hand for instrumentation. Existing solutions
for e�cient low-level instrumentation such as DTrace [12]
work by installing static hooks. Though in a reflective lan-
guage assumptions can change at runtime and thus static
solutions are not appropriate. At the same time we clearly
see that such instrumentation is not a typical high-level ap-
plication. To combine these two worlds we need a di�erent
approach.



Approaching Dynamic Primitive Instrumentation with
Benzo. Using Benzo framework for reflective low-level pro-
gramming we show in Section 4.2, as one of three proof of
concepts, a solution to the problem of e�cient dynamic
VM primitive instrumentation. By dynamically generating
and activating native code from language-side we are able
to create customized primitives. With Benzo even essential
primitives can be dynamically change without the need of a
system restart.

Although this is a clear example, Benzo is a general
reflective high-level low-level programming framework that
overcomes also other system programming limitations. We
illustrate its advantages with other distinct examples such
as a Foreign Function Interface (FFI) and a just-in-time
bytecode compiler (JIT) in Section 4.

1.2 Bridging Abstraction Layers
Extending high-level language runtimes is di�cult due to
their static low-level construction which usually shares little
resemblance with the language-side. Yet for tasks, like the
previously presented primitive instrumentation, if we want
to tackle it with a high-level language, we need solid low-
level interaction.

Requirements. In Section 2 we describe the solutions of-
fered by traditional approaches to modify or extend a lan-
guage runtime: language-side libraries, reflective capabili-
ties, VM extensions or hybrid approaches. However, none
of them is powerful or general enough to support our use-
case. A general and uniform solution is needed that spans
over several abstraction layers. It has to interact on a high-
level with the reflective capabilities of the language runtime
and at the same time provide an interface to interact with
low-level code. To stay flexible and compatible enough the
solution should add these new key features with as little
static low-level intrusion as possible.

• It must be reflective in the sense it must support dynamic
changes of the language runtime (VM) without requiring
a system restart.

• It should imply minimal changes to the existing low-level
runtimes to considerably reduce development e�orts.

Benzo a Framework for Reflective Low-level Pro-
gramming. High-level low-level programming is a pow-
erful technique for system programming without resorting
to static low-level environments [16, 34] that almost fulfills
our requirements. However in a reflective setup it fails to
comply with the first requirement mentioned in the previ-
ous paragraph.

Our approach consists of Benzo, a lightweight, dynamic
and reflective framework that tackles the exposed lim-
itations. Benzo dynamically generates native code from
language-side and can execute the changes in place. It relies
only on a small set of generic VM extensions described in
Section 3.1.

Framework applications. In Section 4 we advocate the
contribution of this approach by providing three di�erent
incremental examples that heavily use the framework from
language-side. They rely on it for extending or even improv-
ing language runtime capabilities. They consist of:

FFI A complete language-side Foreign Function Interface
(FFI) implementation, described in Section 4.1.

Dynamic Primitives A language-side compilation toolchain
that replaces system primitives at runtime with cus-
tomized code, described in Section 4.2.

Language-side JIT Compiler A JIT compiler that works
at language-side and interacts with the VM for code syn-
chronization, described in Section 4.3

As illustrated by these three distinct examples, the contri-
butions of this paper are:
• Encouraging the extension of high-level language run-

times through the use of reflective low-level programming
promoting an open interaction with the low-level world
without the overheads imposed by high-level one.

• A proof of concept of the proposal with the implementa-
tion and description of three di�erent tools that heavily
use reflective low-level programming and covers distinct
scenarios.

2. Current Approaches for

Modifying/Extending Runtimes

We present now an overview of the approaches used to
extend a language runtime and expose their limits.

High-level languages are in general sustained by a VM
and a vast set of libraries written in the language itself.
Extending or improving the existing Runtimes is a di�cult
task. In most cases the VM is considered as a black box.
Additionally the VM is written in a completely di�erent
language using another abstraction level than the one it
supports. Typically high-level language VMs are written in
C or C++. To address runtime extensions in this context
there exist some known approaches:
Language-side Library based on implementing a new or

existing library.
Language-side Reflective Extension relying on reflec-

tive features of the language.
VM Extension by writing plugins or changing the core of

the VM.
Hybrid Extension by accessing external libraries using

FFI.
The relation between the side concerning the abstraction
and implementation levels (VM vs. Language) of these ex-
tensions is illustrated in Figure 1.

2.1 Language-side Library
The most straight forward solution for extending a language
is to write libraries within the language itself. This option
provides the advantage that the aggregate behavior is acces-
sible and evolvable for any language developer.

However language-side libraries are constrained by the
underlying managed runtime. The VM separates the lan-
guage from the low-level internal details. As a consequence
language-side libraries are not feasible for all feature re-
quirements. For instance the previously mentioned example
of instrumenting the runtime is not possible as a standard
language-side extension without a considerable performance
loss. So, even though we prefer extensions and optimizations
at language-side, there are certain limitations of a managed
runtime that can not be circumvented. If all language-side
optimization opportunities have been exhausted it is expos-
ing the need to resort to lower level approaches.

Language-side libraries are constrained to the capabilities
of the underlying VM and thus not general enough. Addi-
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Figure 1: Comparing di�erent extension mechanisms: a) language running on a standard VM, b) language-side implementation
of an extension c) language using features from a VM extension, d) language using features from a VM plugin.

tionally not all performance bottlenecks can be addressed at
language-side.

2.2 Language-side Reflective Extensions.
This is a subcase of the previous approach but in the
context of reflective environments that expose particular
characteristics.

For instance, Meta Object Protocols (MOP) [22] based
on reflection [24] are used to define certain control points
in the system to change the language. By composing meta
objects it is possible to even modify the semantics of the
language. Several languages such as Smalltalk, Python, and
others provide reflective capabilities with di�erent depths
[4, 15, 32].

However most modern programming languages only have
very limited support for intercession. Hence the possibili-
ties for dynamically changing language semantics or features
are limited. Furthermore reflective capabilities are hard to
implement e�ciently. Reflection imposes substantial perfor-
mance penalties on most computations by postponing bind-
ings [25].

Nevertheless there are exceptions for a subset of reflective
behavior which are implemented e�ciently using a high-
level MOP [33]. Though these approaches remain as a few
exceptions. In the typical low-level VM it is di�cult to gain
reflective access to language-side objects.

Similar to the previous case, our goal is to extend lan-
guage features in a general way and it was shown that this
is only partially possible by reflective extensions.

Reflective capabilities are not enough for general extensions.
Even when suitable, they usually pose a significant perfor-
mance overhead up to the point where they become unfeasi-
ble.

2.3 VM Extensions
Another approach is to attach plugins to the VM. Plugins
are direct bindings to external libraries described at VM-
side or libraries linked to the VM executable [8, Ch. 5].
They provide a performance boost in comparison to pure
language-side solutions. Using highly optimized native li-
braries it is straightforward to outperform code written at
language-side.

However, plugins are commonly written in the same lan-
guage as the VM, at a low abstraction level. Few exceptions
are self-hosted languages [29, 31, 34]. To support a fluent
development process, VMs should come with an infrastruc-
ture for building extensions at same abstraction level than
the language. Instead they tend to be very complex and to
have sluggish building processes. For example, only a few
VMs have high-level debugging facilities [19, 31, 34]. Also
from a VM maintenance point of view, extensions have to

be avoided if possible and should only be used for critical
performance issues that can not be properly addressed at
language-side. An example of how the complexity of the VM
can a�ect development e�orts is the core of the Self VM [30].
After reduced development resources parts of the complex
but e�cient compiler infrastructure had to be abandoned in
favor of a more maintainable code-base.

VM extensions provide good performance but imply resorting
to low-level tools where abstraction advantages of high-level
languages are restricted.

2.4 Foreign Libraries
The last approach is to reuse an existing library usually
implemented in a foreign language. The languages interact
through a well-defined Foreign Function Interface (FFI).
FFI-based extensions are an hybrid approach between pure
language-side extensions and VM-side ones. Interaction with
native libraries is supported by a dedicated VM functionality
for calling external functions. This allows for a smooth
interaction of external code and language-side code. FFI
based extensions share the benefits of a maintainable and
e�cient language-side library with modest implementation
e�orts.

However, FFI is only a bridge or interface for allowing
the interaction of di�erent languages. It is not possible to
directly synthesize new native features from language-side.
For this purpose we have to interact with a custom-made
native library. From an extension point of view this is close
to the VM extensions discussed previously.

Additionally to the interface limitations, there exists
a performance overhead in FFI for making the interac-
tion between di�erent languages possible. This is due to
marshalling arguments and types between both languages
[14, 28].

FFI allows developers to cross language-barriers with less
e�ort than a VM extension and enables a tight integration
with existing libraries. However, it is only an interface and
depends on extensions already available. Moreover, perfor-
mance penalties are considerable in some cases.

2.5 Summary
The approaches discussed above rely on language-side code
with the exception of VM extensions. However we have
shown limitations for all of them. Hybrid solutions such
as FFIs are the only ones that come close to meet all
our requirements. The only downside of FFIs is that it
is not possible to directly synthesize new custom native
functionality with them. Hence, for our purpose FFIs are
not general enough as it is not possible to solve our initial
use case for dynamically instrument primitives.



Benzo takes the advantages from the presented ap-
proaches but avoids their weaknesses. By using Benzo high-
level developers tackle the problems in a uniform way by
exploiting the debugging and development facilities pro-
vided by the language. Developers model their applications
or libraries with a high-level language and have a clear in-
terface for generating and executing e�cient low-level code
when needed, but inside the same language and with the
same abstractions and reflective capabilities. In Section 5.2
we show that we achieve the performance requirements of
low-level environments.

3. Benzo Implementation in a Nutshell

This section covers the necessary changes to make Benzo
compatible with the Pharo VM and the language-side be-
havior contributions.

3.1 VM Context
Pharo is a Smalltalk dialect that emerged from the Squeak
project [19]. The Pharo VM implementation [27] also evolved
from the original Squeak bytecode interpreter. The current
VM uses a moving Garbage Collector (GC) with two gen-
erations. Additionally it e�ciently maps Smalltalk method
activation context to stack frames. The VM uses a JIT that
maps bytecodes to native instructions and applies basic reg-
ister allocation to reduce stack load. This situation is not a
direct requirement for Benzo but it is assumed as given and
thus not further discussed in detail.

However Benzo requires certain features that were not
supported in the existing VM implementation. Mainly we
need to generate executable code at runtime and run it.
This requirement is essential and applies to any VM that
wants to support dynamic code execution at runtime.

3.1.1 Executable Memory
We use standard Smalltalk objects to hold the generated
native code. However, by default the object memory is
not executable. This leaves two choices: mark the whole
object memory executable or only move the objects with
the native code to a special executable memory region. We
took the path of least resistance and marked the whole
object memory as executable. The other solution requires
substantial changes for memory management. As the VM
has a moving GC we only access high-level Smalltalk objects
via an indirection from low-level code.

Another approach would have been to harness the fixed
sized executable region used by the existing JIT. However
the JIT space does not hold normal Smalltalk objects but
special low-level structures and uses its own special GC.

3.1.2 VM Interaction
The standard way in Smalltalk to execute low-level code is
to use a tag in the method definition. The following example
shows such a method on the Float class.
* aNumber

<primitive: 49>

ø aNumber adaptToFloat: self andSend: #*

Here we use the primitive 49 to call a VM function which
e�ciently multiplies two floats. Figure 2-a describes the case
where the primitive is successfully executed. However if the
primitive is unable to do the operation, for instance if the
argument aNumber is not a float, it will signal a failure which
causes the VM to execute the fallback Smalltalk code in the
method body. Fig. 2-b describes it.

BytecodesBytecodes
<           ><           >PrimitivePrimitive <           ><           >PrimitivePrimitive

!!VMVM VMVM !!

BytecodesBytecodes

a)a) b)b)

Figure 2: Generic primitive methods in Pharo: a) A primitive
completely bypasses the bytecode, b) A failing primitive
executes the Smalltalk bytecode as fallback.

Benzo uses the primitives as a gate to enter the low-level
world from the language-side. The primitive then executes
the native code generated and returns to language-side.
The generated native code is appended inside the compiled
method object. When the primitive is activated, it accesses
the currently executed compiled method via a VM function.
Figure 3 shows the structure of a Smalltalk compiled method
that has native code attached to it. We see the primitive tag
on top, followed by the literal frame which holds references
to symbols and classes used in the method. The subsequent
Smalltalk bytecode is the fallback code executed only if the
primitive fails. Only then appears the native instructions.
A marker at the end of the compiled method called trailer
type is used to flag methods that actually have native code
attached to them.
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Figure 3: A standard Smalltalk compiled method on the left
and a method with appended native instructions generated
by Benzo.

Since compiled methods are first-class objects it is possi-
ble to modify them at runtime and append the native code.
The primitive primitiveNativeCall, which is implemented
by Benzo, is the responsible of running the native instruc-
tions in a Smalltalk method. The code example interrupt3

shows a very basic application of our infrastructure. In Sec-
tion 3.2 we describe how Benzo uses Smalltalk code to gen-
erate the native instructions, specifically Section 3.2.1 will
explain more detailed examples.
interrupt3

<primitive: ’primitiveNativeCall’

module: ’BenzoPlugin’ >

Benzo generate: [ :asm | asm int3 ]

Listing 1: Smalltalk method using Benzo for low-level de-
bugging.

3.1.3 Native Code Platform Interaction
To ensure that the code is compatible with the current
platform a VM specific marker is expected at the beginning



of the native code on the compiled method. Upon activation
Benzo compares this marker with the one from the current
VM. If they don’t match, Benzo signals a failure that causes
the VM to evaluate the fallback Smalltalk code. With this
elegant approach Benzo regenerates native code lazily on
new platforms. Moreover, it does not have to flush the native
code when the application is restarted on the same platform.

3.1.4 Garbage Collector Interaction
Compiled methods in Pharo have a special section, the lit-
eral frame, which stores objects referenced in the bytecodes.
Bytecodes then only have indirect access to these objects
by indexing into the literal frame. This simplifies the imple-
mentation of the garbage collector as it only has to scan the
beginning of each method for possible references to objects.
So the GC only tracks Smalltalk objects when they are in
the method’s literal frame.

The moving GC of the VM used for Pharo has a sig-
nificant impact on the low-level code we can generate us-
ing Benzo. For instance it is not possible to statically re-
fer to language-side objects from native code as object ad-
dresses changes after each garbage collection. Modifying the
GC to support regions of non-moving objects would solve
this problem. However we chose to minimize the number of
low-level VM modification necessary to run our experiments
and opted for a simpler solution. Like the existing compiled
methods, Benzo’s accesses language-side objects through an
indirection.

For indirectly accessing objects the Pharo VM already
features a special structure, named external roots. This
array has a fixed-location in memory which can be used to
access moving language-side objects. The GC updates the
addresses in this VM structure after each run. Hence we
have the static address of the external roots object as an
entry point to statically access a Smalltalk objects.
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Figure 4: Pointers to objects registered as external roots are
pinpointed at fixed o�set in global VM-level object.

So for accessing Smalltalk objects within native code we
first register it as an external root object and access it only
indirectly. This means that for native code, instead of a
method-local literal array we share a global literal array
as shown in Figure 4. Benzo only adds an Array to the
external root objects which is managed from language-side
and administers all references.

3.1.5 JIT Interaction
When the Pharo VM starts the execution of dynamic gener-
ated code the execution environment changes slightly. Sim-
ilarly, when entering primitives or plugin code that mode is
left and a normal C level execution environment is reestab-
lished until the primitive finishes and the VM jumps back

to the jitted code. To avoid this context changes that im-
ply a considerable performance overhead, we extend the VM
to support inlining of native code in the JIT phase follow-
ing the same strategy as other existing primitives which are
inlined at JIT-level.

The Benzo prologue and epilogue used for managing the
low-level stack are replaced by an adapted version for the
JIT. The performance boost of this optimization is further
discussed in Section 5.2.

3.1.6 Error Handling
Benzo provides an error handling facility that allows to re-
turn high-level error messages from the low-level code. The
native code builder provides a helper method called fail-

WithMessage: that generates the proper assembler instruc-
tions to return a full error message. This allows plugins to
return clear and meaningful error codes, improving the de-
bugging tasks and enabling a better interaction with users.

3.2 Benzo’s Language-Side Implementation
We keep the interface to the low-level world minimal. The
following describes the salient features in the high-level
language-side of Benzo.

3.2.1 Code Generation
Benzo delegates native code generation to a full assembler
written in Smalltalk. The following example shows how to
use the assembler to generate the native code for moving 1

into the 32-bit register EAX.

ASM x86 generate: [ :asm |

asm mov: 1 asUImm to: asm EAX ].

The implementation first creates a slightly more abstract in-
termediate format. The abstract operations can be extended
by custom operations that may expand to several native in-
structions. For pragmatic reasons current implementation
only supports x86 and x86-64.

The plan is to improve the platform independence by
implementing a more abstract domain specific language for
Benzo low-level instructions.

The full runtime features of Pharo are available when gen-
erating native code. Hence complex instruction sequences
can easily be delegated to other objects. In the following ex-
ample we use a VM helper to instantiate an array, note that
these are all standard Pharo message sends:

ASM x86 generate: [ :asm :helper | | register |

register Ω helper classArray.

register Ω helper

instantiateClass: register

indexableSize: 10

asm mov: register to: asm resultRegister.

].

In this case the #instantiateClass:indexableSize: will
generate the proper native code to call to a VM function
and make sure that the side-e�ects of a possible GC run are
handled properly. By default the value in the result register
is returned back to the image, on x86 this defaults to EAX.
The VM helper exposes a basic, low-level interface to access
objects and its properties. Additional methods cover the
access of external roots described in Section 3.1.4. Section
4 will give more complete applications which are based on
Benzo.



3.2.2 Code Activation
Benzo primitive is responsible for the native code activation
which consists of three main steps:
• Check if there is native code in the actual compiled

method and if it is compatible with the current platform.
• Generate native code if necessary.
• Activate the native code for execution.

The example in Listing 1 uses Benzo’s generator to create
and install the native code which would trigger a low-level
interrupt. Behind the scenes Benzo adds some more informa-
tion to the code as the already mentioned platform marker.
For activation Benzo uses reflective features to restart the
method containing the native code. Upon the second activa-
tion, after already generating the native code, Benzo moves
the native code to the end of the compiled method and ac-
tivates it. This mechanism is shown in Figure 5.
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Figure 5: Native code activation with Benzo: The first call
triggers the code generation. Then the method is restarted
and the native code executed.

4. Benzo in Practice

In the following Section we will present a dynamic language-
side implementation, based on Benzo, for each of the three
examples mentioned in the introduction for extending lan-
guage runtimes.

4.1 NativeBoost: a Benzo-based Foreign Function
Interface

FFIs enable a programmer to call external functions without
the need to implement additional VM extensions. Native-
Boost [11] is a full FFI developed on top of Benzo. An FFI
implementation consists of two main parts:
• Execution: calling external functions.
• Marshalling: converting data between the languages.

Typically most of these two parts are implemented in
the VM with statically defined bindings to convert basic
types such as integers, strings and floats between the di�er-
ent representations. Furthermore they provide entry points
to find external functions by name in a certain external li-
brary. Relying on Benzo capability to dynamically generate
and execute native code we developed a complete FFI at
language-side. This way the VM no longer requires to have
a specific FFI extension.
FFI at Language-side. The fact that via FFI we can call
external functions makes it a perfect option to replace VM
extensions defined at low-level side since FFI relies only on
one generic low-level extension: the language-side has to be
able to generate and subsequently call native instructions.
A VM with a well-defined plugin infrastructure enforces the

same level of separation. However unlike plugins, FFI bind-
ings are implemented without crossing a language barrier.
Most code for FFI bindings can be written at language-side
in already existing familiar infrastructure. Furthermore,
compared to a low-level plugin, a language-side library is
easier to evolve and maintain.

FFI-based language extensions also provide a certain
level of portability. Often the only artifact that has to be
ported is the FFI plugin for the VM. In the optimal case the
high-level FFI code is completely compatible. If the platform
does not provide the same signature for the function, only
the language-side code requires changes. This is preferable
since the language-side part of the FFI code relies on better
abstractions and infrastructure for debugging.

NativeBoost does not even depend on a specific VM plu-
gin but on the generic infrastructure provided by Benzo. All
the FFI is implemented at high-level language-side. Figure
6 shows how only the last step in calling an external func-
tion relies on low-level VM interaction. Section 4.1.2 explains
the execution component details. Via reflection techniques
NativeBoost provides a simple yet powerful marshalling li-
brary which is further described in Section 4.1.3.

4.1.1 NativeBoost in a Nutshell
A very simple example to illustrate the functionality of
NativeBoost is to access the current environment variables.
We do this by calling the getenv and setenv C functions.
getenv takes a name as single argument and returns the
value of that environment variable as a string.
getenv: name

ø FFI call: ’String getenv(String name)’

In this example NativeBoost automatically detects that the
arguments for the Smalltalk method are the same as for the
low-level C function. The most important aspect about this
example is that it is written with standard Smalltalk code.
In figure 5 we show how NativeBoost lazily generates native
code on the first method activation.

4.1.2 External Functions and Symbols
For a complete and practical FFI implementation the gath-
ering of external function addresses is an imperative require-
ment. NativeBoost supports this for every platform. For
instance, on UNIX-like systems NativeBoost achieves this
by wrapping around the existing functions dlopen, used for
opening shared libraries, and dlsym, used for returning func-
tion name addresses.

4.1.3 NativeBoost Symbiosis with Pharo
NativeBoost uses reflection capabilities to detect and mar-
shall Smalltalk method arguments to C-level function argu-
ments taking advantage of the full power of Smalltalk to
support complex type conversions. This allows to have sim-
pler declaration of FFI calls.
Argument Detection. NativeBoost automatically detects
the arguments for the C function from the name given
in its declaration. For instance, in the example of Section
4.1.1 the argument for getenv is found by looking at the
method source code. In more complex setups the arguments
of the method might not correspond to the order of the C
function’s arguments and a binding by name does the job.
Type Marshalling. NativeBoost automatically converts
primitive types between the C world and Smalltalk. In the
same previous example of getenv we replaced the char *
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Figure 6: NativeBoost Overview: Unlike typical FFI implementations NativeBoost only resorts to the VM-level when actually
calling the external function in step 4. Typical implementations already cross the low-level barrier during the type conversions
at step 2.

from the original function signature with the single type
String. This allows NativeBoost to automatically marshal
the Smalltalk String into the corresponding C representa-
tion. From a Smalltalk point of view the original declara-
tion char * is ambiguous. Smalltalk distinguishes between
arrays of characters and a real string. For more elaborate
type conversions such as C-level structs NativeBoost uses
marshalling objects that reify the low-level common struc-
tures.

4.1.4 NativeBoost Performance
Compared to a static plugin-based FFI implementation
NativeBoost has only a one-time startup overhead with its
numbers shown in Section 5.2. Generating the native code at
language-side is substantially slower than directly setting up
all the conversions and calling the external functions from C
code. In some cases the penalty for some compilation e�ort
on NativeBoost is as high as a factor of 100 compared to
classic approaches. Under the assumption that the method
is called several times this overhead may be considered neg-
ligible. The following table shows a performance comparison
of three di�erent FFI implementations for Pharo Smalltalk.

Call Time Relative Time
NativeBoost 10.53 ± 0.35 ms 1.0◊

Alien 31.09 ± 0.94 ms ¥ 3.0◊
FFI 19.55 ± 0.64 ms ¥ 1.9◊

Table 1: Di�erent FFI implementations in Pharo running
abs with a single argument. Alien does marshalling at
language-side while FFI does everything in C.

Table 1 measures the accumulative time of 100’000 FFI
calls. Included in these numbers is at least one additional
Smalltalk message send to activate the NativeBoost method
containing the actual call to the C function. Each benchmark
itself is run 1000 times and the average and standard devi-
ation is taken. We also measured calls with more complex
type conversions where the performance boost against Alien
pronounced even more because NativeBoost’s language-side
marshalling is nativized. The JIT interaction described in
Section 3.1.5 is also an important optimization factor es-
pecially when calling out small helper routines where the
context switch from jitted mode is not negligible.

4.2 Reflective Primitives
Pharo VM is developed in a language that is a subset of
Smalltalk known as Slang, which is transformed to C and
then compiled using a standard C compiler. Slang basically
has the same syntax as Smalltalk but is semantically con-
strained to expressions that can be resolved statically at
compilation or code generation time and are compatible with

C. Hence Slang’s semantics are closer to C than to Small-
talk. The primitives of the language are written in Slang
since are part of the VM.

That’s why even in highly reflective languages like Small-
talk where almost every aspect of the language is available
for inspection or modification [13] primitives can not be
changed at runtime. Waterfall [2] is a JIT compiler that
takes the standard primitive definitions from the code writ-
ten in Slang and translates them to native code. This re-
places the indirection via C that is used in the default
compilation process for primitives. But given that Slang
source code can be modified at runtime as any other Small-
talk method, Waterfall fosters primitives to be dynamically
changed.

4.2.1 Waterfall Compiler Summary
From a high-level point of view the services provided by
Waterfall can be outlined in two main functionalities:
• Compile Slang code on demand (lazily), at runtime and

from language-side.
• Provide a clear interface for executing, also at runtime

and from language-side, the native code generated by the
compiler.

The first item allows to change the code of primitives at
language-side and generate the corresponding native code
when needed. Also it provides the potential to write meth-
ods or functionalities with the same Smalltalk syntax but
with a static semantic. It consists essentially of a transfor-
mation toolchain that uses the AST that is generated by the
standard Pharo compiler harnessing that Slang and Small-
talk have the same syntax. Then this AST representation
is translated to native code enforcing C-like Slang seman-
tics. The current prototype has only three fully implemented
stages: Slang to AST, AST to an IR (between TAC and
SSA) and finally AST or IR to native. The design is open
for future additions at any level. One typical enhancement
missing is having di�erent levels of intermediate represen-
tations with various techniques on code optimization and
register allocation strategies as modern compilers propose
[5, Ch. 1].

The second item from above list is the responsible of pre-
senting a clear interface that allows executing the dynami-
cally generated native code. This includes for instance the
gathering of positions of the VM internal symbols. Waterfall
relies on NativeBoost, the Benzo-based FFI presented in the
previous section, for interfacing with C libraries (dlsym). It
also includes the linking between the two worlds: Smalltalk
and native. Benzo is heavily used for providing this second
main functionality.
Primitives in Smalltalk. As already partially explained,
whenever a method is compiled with the primitive pragma



as shown in Section 3.1.2 a flag is set on the CompiledMethod.
If the VM finds that the flag is set, it gets the number
of the primitive and instead of interpreting the bytecodes
it calls the corresponding function at VM-level[17]. The
binding between primitives and numbers is described in a
table indexed by number.

Smalltalk distinguishes two types of primitives: essen-
tial and non-essential primitives. Essential primitives are re-
quired for the bootstrapping and the essential operations of
the language, such as creating a new object or activating a
block. The second category of primitives are mainly used for
optimization purposes.

Dynamically Interchangeable Primitives. Waterfall
uses Benzo’s mechanism for replacing primitive methods
with customized nativized versions that are created dynam-
ically as described in Section 3. This loophole of the language
exploited by Waterfall provides the advantage of having the
possibility to dynamically modifiy some VM behavior with
a considerable much lower penalty on performance.

4.2.2 Benefits and Contribution
We identified two main benefits of changing VM primitives
at runtime:

• Reducing VM complexity by implementing non-essential
primitives reflectively at language-side.

• Dynamic instrumentation of primitives.

Reducing VM Complexity. In Section 2 we concluded
that VM extensions are only justified in the presence of
strong performance requirements. All non-essential primi-
tives fall into that category. Using Waterfall these primi-
tives may be implemented at language-side. This means that
these primitives become first-class citizens of the high-level
environment and thus evolve with less e�ort.

Instrumentation of Primitives. Essential primitives
can not be fully implemented at language-side using Wa-
terfall. These primitives are required for system startup.
Hence they would trigger an endless recursion when booting
up the system. However nothing prevents from replacing es-
sential primitives at runtime with customized versions. We
use Waterfall with primitives for e�cient instrumentation
purposes.

Actually it is absolutely possible to do instrumenta-
tion completely at language-side for non-essential primitives
without Waterfall by accepting the performance penalty,
but for essential primitives doing it is a very fragile task.
The chances of accidentally invoking the same primitive
in the language-side instrumentation code are high. With-
out very careful design the instrumentation code will thus
trigger an endless recursion. Also performance issues could
be prohibitive for language-side solutions. With Waterfall
we can avoid these issues since the instrumentation code
eventually will be implemented at the lowest level.

4.2.3 Performance Analysis
For comparing performance we implement a very simple
integer operation primitive (>) using three di�erent ap-
proaches. The first approach is the implementation with
Waterfall. The second is to run the language-side imple-
mentation that is triggered whenever the standard primitive
failed. Finally the fast standard primitive provided by the
VM. We run the three approaches by measuring the cumu-
lative time over one million primitive activations averaged

over 100 runs. The absolute numbers are less important than
the relative factor between them. We present the results of
this experiment in Table 2.

Running Time Relative Time
VM 6.4 ± 0.14 ms 1.0◊

Waterfall 22.8 ± 0.17 ms ¥ 3.6◊
Reflective 195.0 ± 0.16 ms ¥ 30.0◊

Table 2: Comparing running time of di�erent implementa-
tions of integer arithmetic primitive.

As expected Waterfall’s solution outperforms pure reflec-
tive one by factor 9 to 10. Waterfall clearly outperforms a
purely reflective solution since all the meta programming
overhead for the intercession mechanism is avoided. This
results thus makes a whole new set of runtime extensions
feasible that were previously limited by their strong perfor-
mance penalty. Furthermore the performance penalty over
a completely optimized VM solution that has extreme opti-
mization techniques, such as inlining and register allocation,
is less than a factor of 4. Applying standard optimization
techniques, not yet implemented in Waterfall, will almost
sure improve these numbers even more.

4.3 Nabujito JIT Compiler
In this section we present Nabujito, a Benzo-based approach
for a language-side JIT compiler. Nabujito goes even further
than Waterfall using almost the same techniques. However
instead of focusing on primitives, Nabujito generates native
executable code for standard Smalltalk methods. Primitives
tend to be more low-level, whereas Nabujito focuses on high-
level Smalltalk code.

4.3.1 The JIT of the Pharo VM
The Pharo VM already comes with a JIT that translates
bytecodes to native instructions. It transforms Smalltalk
methods into slightly optimized native code at runtime.
The main speed improvement comes from avoiding bytecode
dispatching and by inlining certain known operations and
primitives [6].

The most complex logic of the JIT infrastructure deals
with the dynamic nature of the Smalltalk environment.
Methods and classes can be changed at runtime and that
has to be addressed by the JIT infrastructure. The JIT com-
piler, by which we refer in this context to the transformation
of bytecodes to native code, represents a small part of the
whole infrastructure. There exists more important stages as
an additional register allocation pass to reduce the number
of stack operations [26, 27]. The existing JIT infrastructure
is implemented in Slang [8, Ch. 5] as the rest of the VM.

4.3.2 Limitations of Standard JIT Compilers
Since the JIT compiler itself is quite decoupled from the
rest of the JIT infrastructure we believe that a hard-coded
static and low-level implementation is not optimal for several
reasons:
• Optimizing Smalltalk code requires strong interactions

with the dynamic environment.
• Accessing language-side properties from the VM-side is

hard.
• Changing the JIT compiler requires changes to the VM

code.



• The JIT reimplements primitives for optimization rea-
sons resulting in code duplication.

Optimizations Limits for Smalltalk. In Smalltalk meth-
ods tend to be very small and it is considered good practice
to delegate behavior to other objects. That implies that sev-
eral common optimization techniques for static languages do
not work. The dynamic method activation do not provide
enough context for a static compiler to optimize methods.
Hence after inline caches and register allocation the next
optimization technique is inlining. However inlining in a dy-
namic context is di�cult and requires hooks at VM level to
invalidate native code when the language-side changes. Since
in Smalltalk compiling a method is handled completely with
language-side code most of the infrastructure to get notified
about method changes is already present.

Primitives in the Existing JIT. The existing JIT reim-
plements the most used primitives at VM-level. This is nec-
essary for instance to guarantee fast integer operations. A
typical example is the integer addition which has to deal
with overflow checks and conversion of tagged integers. In
Section 4.2 we describe how Waterfall su�ers a similar re-
quirement. Hence Waterfall manually defines such primi-
tives in terms of native assembler instructions through the
language-side Benzo interface. Nabujito, a language-side JIT
compiler described on next section, reuses the same opti-
mized primitives so we rely on a single optimized definition
which is shared amongst all native code libraries.

4.3.3 Implementing Nabujito
Nabujito is an experimental JIT implementation which re-
places the bytecode to native code translation of the exist-
ing JIT infrastructure with a dynamic language-side imple-
mentation. Nabujito is implemented mainly with a visitor
strategy over the intermediate bytecode representation. Ad-
ditionally we reimplemented using Benzo vital native rou-
tines for the JIT which are not directly exported by the
VM.

Nabujito relies on the following VM-level infrastructure
to manage and run native code:

• Fixed native code memory segments.
• Routines for switching contexts.
• Native stack management.

Dynamic Code Generation. To simplify the implemen-
tation we decide to manually trigger JIT compilation. For
primitives known by Waterfall we rely on that infrastructure
to generate the native code. For standard methods Nabujito
takes the bytecodes and transforms them to native code.

It also applies optimizations such as creating low-level
branches for Smalltalk level branching operations like ifTrue:.
Optimizations for additional methods are all implemented
flexibly at language-side. Wherever possible we reimplement
the same behavior as the existing native JIT compiler.

Eventually the native code is ready and Benzo attaches
it to the existing compiled method. When the language-side
jitted code is activated Benzo ensures that we do not have to
leave the JIT execution mode, and thus we can call methods
at the same speed as the existing JIT. The benchmarks of
section 4.3.4 show the empirical results.

4.3.4 Nabujito Performance
Performance is of course the main contribution of a JIT and
it is imperative to analyze the e�ciency of a language-side
implementation.

Nabujito essentially generates the same native code as
the VM counterpart. For the experiment we reimplement
the C routines found in the VM JIT at language-side. There
is no speed di�erence in the generated native code. However
Nabujito is slower during the warm-up phase. Compilation
of the native instructions will take considerably more time
compared to the C implementation of the same bytecode
to assembler transformation. However this is not critical for
long-term applications.

Compilation Time
Pharo Compiler 71 ± 1 ms

Nabujito 73 ± 1 ms

Table 3: Compilation e�orts of the standard Smalltalk com-
piler in Pharo and Nabujito for the a simple method return-
ing the constant nil.

In Table 3 we compare the compilation speed of the
standard Pharo compiler and Nabujito. We measure the
accumulated time spent to compile the method 1000 times.
The average and deviation are taken over 100 runs. The
Pharo compiler takes source code as input and outputs
Smalltalk bytecodes. Nabujito takes bytecodes as input and
outputs native code.

We see that in the simple case displayed in Table 3 Nabu-
jito’s compilation speed lies within the same range as the
standard Smalltalk compiler. We expect that in the future
we apply more low-level optimizations and thus increase the
compilation time of Nabujito. However we have shown in the
performance evaluation for NativeBoost, the Benzo-based
FFI, in Section 4.1.4 that even a rather high one-time over-
head is quickly amortized. Furthermore with Smalltalk’s im-
age approach the generated native code is persistent over
several sessions. A subsequent restart of the same runtime
will not cause the JIT to nativize the same methods it did
during the last launch. Hence our approach is even valid for
short-timed script-like applications as most of the methods
will already be available in optimized native code from a
previous run.

4.3.5 Outlook
One major performance optimization missing in both, the
original VM-level JIT and Nabujito, is inlining. By inlining
we are able to create methods that are potentially big
enough for optimizations. However inlining is a di�cult task
in a highly dynamic language such as Smalltalk. E�cient
inlining can only be performed with su�cient knowledge
of the system. Accessing this high-level information from
within the VM is cumbersome and requires duplication of
language-side reflective features. We are convinced that with
Nabujito we simplify this task significantly. The JIT lives
on the same level as the information it needs relying on the
already present reflective features of Smalltalk.

5. Implementation Issues

The aspects concerning security for this kind of low-level ca-
pabilities over high-level languages allow for much discussion
and controversy. Performance is the other most discussed is-



sue in the system programming domain and we exposed the
results of Benzo related to it.

5.1 Security in Reflective Low-level Programming
Benzo breaks the security aspects provided in high-level lan-
guages such as memory safety or proper exception handling
[23]. However the implications are not di�erent from any
other FFI implementation used in high-level languages. Di-
rect use of low-level native instructions poses a security risk
to the system. There has been detailed research in how
to make FFI implementations more secure. Typically the
compiler statically ensures that no compromising structures
leave the VM-realm [18]. By analyzing the internal usage
pattern of the external function it is possible to further re-
duce the risk of accidentally modifying vital internal VM
structures. By shielding of the VM internal structures from
the external world we e�ectively limit the risk but at the
price of limiting also the power of an FFI. We show in Sec-
tion 2 why FFI existent solutions are not powerful enough
for certain types of extensions that are important for us.
Security risks are one of the reasons exposed for this limita-
tions.

Besides of the inherent security problems of FFI there
is the whole reflective power of the Smalltalk environment
as a security risk. Smalltalk allows a programmer to change
classes and methods at runtime. There exist even methods
that dynamically replace all references to an object with
another one in the entire system. For many other high-level
languages such functionality is not accessible from language-
side or not present at all in the runtime. Some Small-
talk language features, such as the live instance migration
[17], rely on this reflective capabilities and are vital for the
developer experience. Hence we can conclude that Benzo
poses the same security risks as other essential architectural
decisions that the Smalltalk environment promotes.

We believe that security has to be addressed in a more
general way at language-side and not restricting the possi-
bilities of the developers. If we can enforce proper security
constraints at language-side it is possible to encapsulate dan-
gerous behavior in a controlled domain. Only with such a
solution are we able to provide security in a Smalltalk-like
environment.

5.2 Performance
Benzo allows the generation of e�cient native code. We al-
ready showed that the generated native-code from language-
side only causes a one-time overhead on its initial creation.
Thereafter it is cached for later activations. We also argued
that for the three Benzo proof of concepts examples pro-
posed in Section 4 this overhead can be neglected. Further-
more, for the FFI implementation we show in Table 1 how we
outperform the existing FFI implementations due to more
specific native code. The performance gain by the execution
of custom-made native code outweighs the one-time cost of
language-side code generation.

Benzo’s close interaction with the JIT described in Sec-
tion 3.1.5 further reduces the reoccurring costs of calling
native-code.

LuaJIT follows the same approach for their FFI library
[1].

Our conclusion is that even a high one-time compilation
overhead has little influence on the overall performance
of the system. Hence the benefits of reflective low-level
programming outweigh.

6. Related Work

QUICKTALK [7] follows a similar approach as Waterfall.
However Ballard et al. focus mostly on the development
of a complex compiler for a new Smalltalk dialect. Using
type annotations QUICKTALK allows for statically typing
methods. By inlining methods and eliminating the byte-
code dispatch overhead by generating native code QUICK-
TALK outperforms interpreted bytecode methods. Com-
pared to Waterfall QUICKTALK does not allow to leave
the language-side environment and interact closely with the
VM. Hence it is not possible to use QUICKTALK to modify
essential primitives.

High-level low-level programming [16] encourage to use
high-level languages for system programming. Frampton et
al. present a low-level framework packaged as org.vmmagic,
which is used as system interface for Jikes, an experimental
Java VM. Additionally their framework is successfully used
in MMTK [9] which is used independently in several other
projects. The org.vmmagic package is much more elaborate
than Benzo but it is tailored towards Java with static types.
Methods have to be annotated to use low-level functionality.
Additionally the strong separation between low-level code
and runtime does not allow for reflective extensions of the
runtime. Finally, they do not support the execution and not
even generation of custom assembly code in the fly.

Other related approaches are VM generation frameworks
in general. They try to abstract away the complexity of the
VM and use high-level languages as compiler infrastructure.
A very successful research project is Jikes Research VM [20].
It uses Java to metacircularly define a Java runtime which
then generates the final VM. A similar framework is PyPy
[29] a VM framework including an e�cient JIT. PyPy uses
a restricted subset of the Python language named RPython
which is then translated to various low-level backends such
as C or LLVM code. There exist several di�erent high-
level language VM implementations on top of PyPy such
as Smalltalk [10] or Prolog. However its main focus lies on
an e�cient Python interpreter.

Other high-level languages such as Lua leverage FFI per-
formance by using a close interaction with the JIT. LuaJIT
[1] for instance is an e�cient Lua implementation that in-
lines FFI calls directly into the JIT compiled code. Similar
to Benzo this allows to minimize the constant overhead by
generating custom-made native code. The LuaJIT runtime
is mainly written in C which has clearly di�erent semantics
than Lua itself. Compared to our approach the e�cient VM
implementation su�ers from the shortcomings described in
Section 2.3.

Kell and Irwin [21] take a di�erent look at interacting
with external libraries. They advocate a Python VM that al-
lows for dynamically shared objects with external libraries.
It uses the low-level DWARF debugging information present
in the external libraries to gather enough metadata to auto-
matically generate FFIs. However they do not focus on the
reflective interaction with low-level code and the resulting
benefits.

7. Conclusions

We presented Benzo a reflective low-level programming
framework written in a dynamic high-level language. Benzo
is an integral approach for reflective high-level low-level
programming. Using Benzo we e�ciently implemented at
language-side three distinct language feature extensions that
typically reside at VM level.



Benzo promotes interaction with the low-level world by
dynamically generating native code from language-side. This
allows to exploit the underlying platform capabilities only
when strongly needed without leaving the development plat-
form and through a high-level programming interface. Benzo
advocates the use of development tools and abstraction level
of the high-level language for as much as possible or desired.

With high-level reflection capabilities combined with ef-
ficient low-level code we manage to do dynamic primitive
instrumentation and reuse the code for primitive operations
which is duplicated on the standard JIT approach. We also
show that since Benzo caches native code transparently at
language-side our JIT compiler poses only a one-time over-
head when generating native code. Our mature FFI imple-
mentation outperforms an existing C-FFI implementation
by a factor 1.5 even though we control every aspect from
the language-side.

Benzo shows that promoting clear interfaces for con-
trolling low-level code completely from language-side pro-
duces e�cient solutions for system programming require-
ments without resorting to pure low-level solutions. We
showed that combining the abstraction provided by high-
level languages with the complete and precise powerful sys-
tem programming capabilities of low-level languages is not
only possible but profitable. Furthermore we manage to con-
siderably reduce complexity and code duplication which re-
sults in better maintainability.
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Abstract
Bee is a Smalltalk dialect. Its runtime is exceptional in that
it is completely written in Smalltalk. Bee includes a minimal
kernel with on-demand loaded libraries, a JIT compiler, an
FFI interface, an optimizing SSA-based compiler, a garbage
collector, and native threading support among other things.
Despite being written in Smalltalk, Bee achieves promising
performance levels.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Code Generation; Compilers; In-
cremental compilers; Memory management (garbage collec-
tion); Run-time environments

General Terms

Keywords runtime, virtual machine, self-hosting, com-
piler, garbage collector

1. Introduction
Bee runtime is completely written in Smalltalk. This covers
kernel features like message dispatching, primitives, just-in-
time compiling, threading support and garbage collection,
among others.

The implementation of this environment in such a high
level language required solving key problems.

Insufficient meta-object semantics. Smalltalk includes a
very powerful metacircular class hierarchy. Yet it doesn’t
reify a key aspect of objects: it is not possible to access ob-
ject headers. This poses barriers to the implementation of
things like primitives, or garbage collectors. We slightly aug-
ment the smalltalk semantics by implementing underprimi-
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tives, extremely small and efficient methods that consist of
just a few inline-assembled machine instructions.

Breaking self-sustaining circularity. Bee is self-hosted,
which means it doesn’t require any external runtime support
library or virtual machine. Features like message lookup,
primitives and garbage collection are implemented within
the language itself. This characteristic means that the code
implementing some features often assumes and even re-
quires their existence to work. As an example, message
lookup is written in Smalltalk, therefore message lookup nat-
urally sends messages during its own execution. This leads
to endless lookup recursion unless a means to cut it is incor-
porated. We worked around this kind of problems by care-
fully dissecting code closures and by issuing ahead-of-time
nativization1 of dispatch mechanisms.

A key aspect to support our solution is having control
of the Smalltalk JIT compiler and machine code assembler,
which are both written in Smalltalk. The JIT lets us trans-
form underprimitives into very low level and efficient pieces
of code, leveraging low-level actions in an object oriented
fashion.

The remaining of this paper is organized as follows. In
section 2 we describe the context of this Smalltalk dialect.
In section 3 we describe the three most relevant models for
the Bee runtime: the Bee metaclass hierarchy, the memory
model and the ABI model. The runtime implementation de-
tails are described in section 4. We focus on the implemen-
tation of method lookup and primitives, but we also describe
the modularity in the design, and the mechanism to perform
low-level operations from Smalltalk, id est., the underprim-
itives. Current state of Bee development is described in sec-
tion 5. An analysis of performance can be found in section 6.
We culminate this work with a discussion on related work in
section 7 and a conclusion with final remarks in section 8.

1 We use the term nativization to mean generation of machine instructions.
This is to contrast with the word compilation, which we use to refer to
bytecode generation; or the word jitting, which we use for just-in-time
nativization



2. Context
High level languages usually allow a more dynamic pro-
gramming style by delaying bytecode and machine code
compilation, avoiding static typing and adding automatic
garbage collection, among other things.

High level languages require runtime support to offer all
these functionalities, usually in the form of a Virtual Ma-
chine. These functionalities have runtime costs that drag
down performance of user programs. Besides, higher level
languages discourage or even disallow low level actions like
direct access to memory for the sake of program safety. Even
if possible, accesses to memory are done through abstrac-
tions that try to validate each action, heavily hurting perfor-
mance.

This combination of characteristics makes it difficult to
implement runtime support itself in high-level languages,
resorting instead to low-level ones.

Low level languages, on the other hand, usually require
static compilation to machine instructions before execution,
type specifications throughout the code and manual memory
management. In exchange of this, low level languages usu-
ally generate highly efficient code.

But implementing runtime support libraries in high level
environments can yield a better understanding of the prob-
lem’s domain [20]. Runtime programmers can take advan-
tage of the environment tools and abstractions. Instead of
spending their focus simulating code execution in their
heads, they can make use of the plethora of inspectors,
browsers and debuggers to give shape to more readable and
easier to understand solutions.

Finally, programmers want and should be able to know,
understand and improve the implications and limitations of
the runtime they are running on [14]. This is eased if the
programming language of the runtime is the same than the
language they use everyday for writing code.

3. Overview of Bee metaclass and memory
model

Before delving into complex Bee topics like machine code
generation, lookup and primitives implementation, we give
an overview of a small group of Bee details that will help
understanding the whole system.

3.1 Bee metaclass hierarchy
Bee follows as a base Smalltalk-80 class hierarchy [9], with
some major deviations. The root class in the hierarchy is
ProtoObject, whose super class is nil; Object subclassifies
ProtoObject.

A big difference between Bee and Smalltalk-80 lays in
its metamodel. The metaclass hierarchy, while similar, has
been severed to allow dissociating class shape and object
protocol. This simplifies the usage of objects of a same
class with different behavior. The class Behavior truly refers
to object behavior. It is not the superclass of Class and

behavior
hashsize ags0
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hash4 ags0

4

behavior
hash4 ags8
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Figure 1. Regular and extended object headers

Metaclass. Instead, it is a variable size collection of method
dictionaries. During lookup, the object’s behavior will be
traversed in order until a method is found for the searched
selector. Thus, an object’s behavior defines how the object
responds to messages.

Both Class and Metaclass subclassify Species. Species
includes most of Smalltalk-80 protocol for ClassDescrip-
tion, which handles class and instance variable names, in-
stance creation and more.

3.2 Memory model
In memory, objects are stored as an array of slots or bytes
(depending on whether they are pointer o byte objects) pre-
ceded by a header. Slots that don’t reference SmallIntegers
have the address of the first slot or byte of the referenced
objects, just after the header. We call these OOPs (Object
Oriented pointers).

Given an object, its header describes many of its prop-
erties, like size, hash, shape and behavior. It is composed of
various bit fields. It occupies 8 bytes in regular cases, or 16 if
it is an extended header. Extended headers are needed for big
objects (bigger than 255 elements) and for ephemerons [10].
The first doubleword of a regular header describes size, hash,
shape and garbage collection status. The second doubleword
is an OOP to the object’s Behavior. When extended, the
header contains two additional doublewords that are placed
immediately before the regular header. The size field of regu-
lar header is set to 4 and the isExtended bit is turned on. The
first doubleword of the extended header is set as a copy of
the first doubleword of the regular header. The second word,
on the other hand, is set to the actual size of the object. The
size of the object represents the number of slots or bytes in
memory of the object.

Notice that objects don’t have a direct pointer to their
class. Their class is determined by the class field found in
the first method dictionary of their Behavior. Figure 1 shows
the memory layout of object headers.



SmallIntegers are an exception to these memory layout
rules, they are tagged. SmallIntegers are not allocated in
the heap. When a slot is stored with a SmallInteger, instead
of writing a memory address, we write the numeric value
shifted one bit to the left and incremented by one. As objects
are aligned in memory to 4 bytes addresses, SmallIntegers
can be quickly distinguished from regular objects. This is
a common technique that was already present in the 16-bit
implementation of Smalltalk-78 [15], and adopted by many
other virtual machine implementations later [6, 13].

We extend SmallInteger tagging with the use of small
pointers. SmallIntegers represent numbers from �230 to
230 � 1, as they fit in a 32-bit word with the least signifi-
cant bit clamped at 1. When dealing with pointers, we use
standard SmallIntegers to do arithmetic calculations. This
limits us to pointers with addresses in the 0 to 230� 1 range,
exactly 1GB of memory.

Conversion of pointers to SmallIntegers is done by shift-
ing the pointer to the left 1 bit and adding 1 to the result. But
as pointers are always 4 byte aligned, we can convert them
to SmallIntegers by just setting their least significant bit to
1, without shifting. The small integer represented by such a
doubleword is the memory address divided by two. We call
this a small pointer. Small pointers look and behave exactly
as SmallIntegers, the programmer is responsible of dealing
with conversions when needed. Thanks to small pointers, we
are able to support up to 2GB of memory.

3.3 Bee ABI2

Bee assembler models a Stack architecture with a group
of very specific registers, as described in [1]. These are:
R (receiver and result), arg (argument), temp, self, method
environment context, stack base and top of the stack. Both
R, arg and temp can change between bytecode and bytecode,
and are saved by the caller during message send. Self doesn’t
change from bytecode to bytecode but must be restored
before returning from a method. Arguments are passed in
the stack, pushed left to right, and are callee cleaned.

Currently, Bee only supports x86-32 bit architecture, and
we map R to EAX, arg to EDX, temp to ECX, self to ESI,
method environment context to EDI, frame pointer to EBP
and top of the stack to ESP3. We show a stack frame for
this ABI in figure 2. In the example, the method receives two
arguments, contains two temporary variables and at least one
block closure.

Most Smalltalk methods generate a new stack frame on
activation, unless they are very short and don’t need one.
After pushing the previous frame pointer, they push the
receiver and the compiled method. If necessary, they also
push the method environment context. On exit, the stack top
is set to the frame pointer, the old frame pointer is popped

2 The application binary interface defines low level conventions like param-
eter passing and saved registers across calls
3 this convention is very similar to Pascal
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Object>>#foo:bar: ebp-08

self ebp-04

prev. ebp ebp
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right arg ebp+8

left arg ebp+12

...

Figure 2. Bee Stack frame layout for Object>>#foo:bar: in
memory on x86

and ret n instruction transfers control back to the caller
cleaning n arguments.

4. Bee implementation details
4.1 Bee method nativizer
All methods in Bee are objects of the class Compiled-
Method. Methods are compiled to bytecodes first, and then
nativized. Among other things, CompiledMethods contain
slots pointing to their bytecodes and to their NativeCode,
a reification of machine code. NativeCode, in turn, con-
tains a slot that points to the actual machine code, which is
stored as a ByteArray. NativeCode also contains an array of
references, with their respective offsets inside the machine
code ByteArray. In this way, machine code is abstracted, can
be easily accessed by the image when needed (i.e. during
lookup), and needs little special treatment by the runtime, as
shall be seen later.

To generate machine code from a method’s bytecodes, an
instance of the class BeeMethodNativizer iterates over the
bytecodes writing their corresponding assembly.

As in Smalltalk-80, Bee Smalltalk contains special byte-
codes for the most common arithmetic and logic opera-
tions. Our compiler is also smart enough to transform sim-
ple blocks, such as the ones used in #ifTrue:, #ifFalse:
or #whileTrue: messages, into equivalent comparison and
jump bytecodes. Besides, Bee is also capable of doing spe-
cial case message send nativization for selectors that are
not associated with a special bytecode. We detail both ap-
proaches next.



4.1.1 Inline nativization of messages through special
bytecodes

The method nativizer generates specific assembly for most
cases of special arithmetic and logic selectors. As example,
let’s consider addition. At compile time, when encountering
a #+ message send, the compiler will output a Plus byte-
code. At nativization time, the nativizer will assemble a cou-
ple of instructions to perform inline addition if possible, and
to send the #+ if not. First it will insert a SmallInteger test
for both the receiver and the argument. Then it will assemble
the addition and a check if the result fits in a SmallInteger.
Finally it will assemble the #+ message send. At runtime,
if all checks pass, the #+ send will be skipped; if any of
the mentioned checks fail, it will fallback to the message
send. Even if this is mainly done for performance reasons,
it has a deep impact in other parts of the system, easing the
implementation of components like lookup and the garbage
collector.

4.1.2 Custom nativization of message sends through
send inliners

When the nativizer passes through a generic message send
bytecode, it delegates the machine code generation to differ-
ent assembly generators, or send inliners. The method na-
tivizer associates selectors with different send inliners. In
the typical case, the associated send inliner will assemble
the necessary instructions to call lookup. For some specific
selectors, on the other hand, the nativizer will associate a
different send inliner and generate different assembly.

Being in control of the bytecode nativizer from Smalltalk
is critical for the implementation of these different send
inliners, which are essential to leverage the development of
Bee runtime in an efficient and object oriented manner. They
are also key for system self-sustainability.

Different send inliners include the assembly send inliner,
which generates special case machine code depending on
the selector, and both lookup send inliner and invoke send
inliner which generate machine code to call lookup and
invoke respectively.

Underprimitives. These are a minimal set of selectors that
are resolved with inline assembly, instead of sending a mes-
sage. An example of an underprimitive is # isSmallInteger.
When seeing this selector, the assembly send inliner directly
inserts assembly to check if the object is tagged.

assembleTestSmallInteger
| integer |
integer := assembler testAndJumpIfInteger.
self loadObject: false.
assembler uncontionalSkip: [

assembler jumpDestinationFor: integer.
self loadObject: true]

Underprimitives are a convenient abstraction of very low-
level operations. They are limited to a maximum of two
arguments. They assume the receiver is in R register and
that the first and second arguments lay in arg and temp
respectively, if present. A few dozen of underprimitives are
enough to cover all the low-level actions needed for the
implementation of the entire system.

4.1.3 Lookup and invoke
Execution of Smalltalk code involves execution of a message
dispatching algorithm. In Bee, this algorithm is written in
Smalltalk. For that reason, it is necessary to cut the recursive
lookup chain to avoid an infinite recursion.

We shall distinguish two mechanisms when issuing what
is generically called lookup: method lookup and method in-
vocation. The first refers to the action of finding the corre-
sponding compiled method to be later executed. The second
one refers to the action of transferring control to the com-
piled method’s native code.

In the next snippet we show the # lookupAndInvoke en-
try method. The code is straightforward: # lookup: fetches
the corresponding compiled method for the selector, or nil
if none was found, in which case the message to send is
#doesNotUnderstand:. The compiled method is prepared
for execution and finally control is transferred to the found
method’s native code. Notice that Bee uses monomorphic in-
line caches [8], so lookup includes call-site patching code.

lookupAndInvoke: aSymbol
| cm |
cm := self lookup: aSymbol.
cm == nil ifTrue: [

cm := self lookup: #doesNotUnderstand:.
self transferControlTo:

cm noClassCheckEntrypoint asNative].
cm prepareForExecution; patchClassCheckTo: self behavior.
self

transferControlDiscardingLastArgAndPatchingTo:
cm noClassCheckEntrypoint asNative

Lookup. The native code generator used for lookup is the
same than the one used for any other Smalltalk methods,
with a slightly different configuration for message sends.
When nativizing the # lookup: message send, it will gen-
erate machine code according to the configured send inliner.
If using the lookup send inliner, this code would fall into an
infinite recursion. To solve this problem, we calculate a code
closure. The implementation of # lookup: is unique to all
system, and we know beforehand the compiled method that
would be found if # lookup: were looked up. We can assure,
by carefully writing lookup code, that the same happens to
all the messages involved in lookup. Then, when nativizing
lookup methods, we can set the send inliner to an invoke
send inliner. An invoke send inliner pushes the unique com-
piled method for that selector, instead of pushing a generic
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Figure 3. Code closure of #lookupAndInvoke:. Some se-
lectors were summarized for brevity.

selector, and calls an invoke mechanism, instead of lookup.
Figure 3 shows the message send graph of #lookupAndIn-
voke:, for which the method closure is calculated. We man-
ually configure the method nativizer send inliners, so that
message sends get nativized as invokes to the methods to be
found for the respective selectors.

Invoke. We detail invoke implementation next. It is very
similar to the end of #lookupAndInvoke:. The main differ-
ence is that invoke patches the call site to point to the native
code just after the prologue. This avoids a class check in the
next call (which would fail if the next receiver is of a differ-
ent class).

invoke: aCompiledMethod
aCompiledMethod prepareForExecution.
self transferControlDiscardingLastArgAndPatchingDirectTo:
aCompiledMethod noClassCheckEntrypoint asNative

There is a last subtlety with invoke. Consider the nativiza-
tion of #prepareForExecution message send. Of course, if it
were nativized with a lookup send inliner, it would cause an
infinite recursion at runtime. But if nativized with the very
same invoke send inliner, it would also cause an infinite re-
cursion of invokes. The trick to solve this is to nativize # -
invoke: with a shortened and inlined version of itself. The
following snippet shows the resulting code, where all mes-
sage sends are actually nativized inline, and can be resolved
without sending any real message.

lightweightInvoke: aCompiledMethod
| nativecode bytes classCheckDisplacement address |
nativecode := aCompiledMethod basicAt: 2.
bytes := nativecode basicAt: 1.
classCheckDisplacement := 16rD.
address := bytes asSmallInteger +

classCheckDisplacement.
self

transferControlDiscardingLastArgAndPatchingDirectTo:
address asNative

To finish this section we explain why lookupAndInvoke:
can be a simple Smalltalk method with normal arguments,
and how the control transferring works.

Arguments passing. As can be derived from section 3.3,
just before the call to method lookup, all method arguments
have been pushed in left-to-right order, and lastly, the selec-
tor was pushed and lays in the top of the stack. # looku-
pAndInvoke: takes advantage of this fact. Inside # looku-
pAndInvoke:, the references to the first and only argument
will be transformed by the nativizer to the same address it
would do in any case: ESP+8. This works perfectly until
the return point.

Transefering control. At the epilogue of # lookupAnd-
Invoke: and # invoke:, just after restoring frame pointer and
stack top, the stack still has an extra argument, the selector or
compiled method, respectively, that needs to be removed. If
not, the method to be activated would wrongly see the selec-
tor as it rightmost argument. There is an extra complication,
because after the selector was pushed, the call to lookup was
issued, and the return address was pushed into the stack. -
transferControlTo family of underprimitives write the same
assembly that is commonly issued on method exit, but also
solve this last argument problem by issuing pop [esp], an in-
struction that pops the top of the stack into its next position.
Besides, as last instruction, it assembles a jmp instruction,
instead of a ret n, seamlessly transferring control to the ac-
tual method, which doesn’t need any special stack treatment.

4.2 Access to object headers
Thanks to underprimitives, it is possible to access raw object
headers. Yet, these underprimitives are a bit too low-level
for common usage. As an example, checking the size of an
object requires reading the header bits to determine if it is
extended, and then to access the corresponding size field,
which might be a byte or a whole slot. Implementing all this
with an underprimitive would be overkill, as it would require
too much assembly writing. Instead of that, we implemented
a set of methods that abstract access to object headers within
Smalltalk code. For example, checking if an object is ex-
tended can be done with the following line of code:



isExtended
ˆ(self basicFlags bitAnd: IsExtended) = IsExtended

Again, these are methods written in Smalltalk, so we can
easily do complex actions. An object header can be marked
as bytes with:

beBytes
self flagsSet: IsBytes.
self isExtended ifTrue: [self extendedFlagsSet: IsBytes]

extendedFlagsSet: mask
self extendedFlags: (self extendedFlags bitOr: mask)

The size of an object can be obtained from its header
with:

size
| total |
total := self isExtended

ifTrue: [self extendedSize]
ifFalse: [self basicSize].

ˆ(self isBytes and: [self isZeroTerminated])
ifTrue: [total � 1]
ifFalse: [total]

These methods abstract away most problems of dealing
with object headers in a clean, object oriented style. A dis-
cussion about their efficiency is done in section 6.3.

4.3 Primitives
Bee doesn’t implement primitives in the standard Smalltalk-
80 way. The reason for this are undermethods, underprimi-
tives and inline nativization of bytecodes. We begin with the
description of the simplest primitives, and finish the section
with the most complex ones, showing how most of the code
can be implemented in plain Smalltalk, with the help of only
a few underprimitives.

It is also important to remark that in current Bee itera-
tion garbage collection has not yet been enabled. This eases
implementation of primitives but will need revision when
garbage collection is enabled again.

We start explaining this by showing a very small exam-
ple. Consider the method ProtoObject>>#size. While in
other Smalltalks this will need a primitive, in Bee it will be
implemented as:

ProtoObject >> #size
ˆself size

The implementation takes advantage of the reification
of the object header, which can be accessed through under-
methods. Other good examples are ProtoObject>>#behavior
and ProtoObject>>#class

ProtoObject >> #behavior
ˆself isSmallInteger

ifTrue: [SmallInteger instanceBehavior]
ifFalse: [self basicAt: 0]

ProtoObject >> #class
ˆself behavior mainClass

Notice that Behavior has been reified, so finding the class
can be delegated to it. ProtoObject>>#== shows the ben-
efits of inline nativization of bytecodes:

ProtoObject>>#== other
ˆself == other

This will be nativized as a pointer comparison by the
nativizer. If the pointers are equal it will load true, else it will
load false. ProtoObject>>#perform: is a good example of
the benefits of the reification of lookup.

ProtoObject>>#perform: aSymbol
aSymbol arity = 0 ifFalse: [ˆself error: ’incorrect arity’].
ˆself lookupAndInvoke: aSymbol

Unlike Smalltalk-80 primitives, here there is no special
concept of primitive failure. When a wrong arity is de-
tected in normal Smalltalk code and doesn’t require a sec-
ond chance method activation. Careful readers will notice
that the sent message is #lookupAndInvoke: and not # -
lookupAndInvoke:. The difference is that the former doesn’t
patch the call site during invocation, which would be wrong
in the case of perform. The main advantage of implementing
low-level functionality in Smalltalk is that we can rely on
existing code. For example, calculating selector arity was
already implemented code. This gets an even bigger impact
when writing more complex primitives. Consider the imple-
mentation of #value

BlockClosure>>#value
self argumentCount = 0 ifFalse: [ˆself arityError].
self transferControlTo: self code

Notice how natural this code feels. code returns the
address of the block’s native code. The only addition to
Smalltalk semantics needed was the # transferControlTo:
underprimitive. Other variations with a different amount of
arguments are very similar.

The implementation of #become: is very interesting. Re-
member that #become: should scan all Smalltalk memory
looking for references to the receiver, and replacing them
with the argument. Besides, the process’ stack, which is not
inside a GCSpace, should also be visited.



ProtoObject>>#become: anotherObject
Memory current make: self become: anotherObject

Memory>>#make: anObject become: anotherObject
1 to: spaces size do: [:i | | space |

space := spaces at: i.
space make: anObject become: anotherObject].

ProcessStack current make: anObject become:
anotherObject

#become: is split in two stages. The first stage traverses
each existing GCSpace, looking for references to the source
object, and replacing them with the target one.

GCSpace>>#make: anObject become: anotherObject
| objectBase object endOop |
objectBase := self base.
endOop := self nextFree.
[objectBase < endOop] whileTrue: [

object := (objectBase + 8 asPointer) asObject.
object isExtended
ifTrue: [
objectBase := (object basicSize 4)

asPointer + objectBase.
object := objectBase asObject]

ifFalse: [
objectBase := objectBase + 8 asPointer].

objectBase := objectBase + object
sizeInBytes asPointer.

0 to: object pointersSize � 1 do: [:i |
(object basicAt: i) == anObject
ifTrue: [object basicAt: i put: anotherObject]]]

After all spaces have been scanned, the stack is traversed
to find any remaining slot to change.

ProcessStack>>#make: anObject become: anotherObject
| frame size endMarker nextFrame |
frame := self framePointer.
endMarker := 0 asObject.
[

nextFrame := frame basicAt: 1.
nextFrame == endMarker]
whileFalse: [| first |

size := nextFrame asPointer �
frame asPointer // 4 asPointer.

first := 3.
self

make: anObject
become: anotherObject
in: frame
count: size
startingAt: first.

frame := nextFrame]

GCSpace traversing has an extra subtle difficulty. The im-
plementation avoids using real block closures. Real block
closures require an environment, which is nothing more than
an array to be allocated in the current GCSpace. This ar-
ray might reference the source object and get modified dur-
ing scan. If this happens, the source object might not be
recognised any more. Besides #ifTrue:ifFalse: family of
messages, both #whileTrue:, #whileFalse: and #on:do: are
also inlined by the Smalltalk compiler. For example, when
finding a #whileTrue: message send, the compiler inserts
a jump-false bytecode at the block guard site, targeting the
code after the argument block. It also inserts an uncondi-
tional back-jump at the end of the argument block, targeting
the beginning of the guard block.

We close this section by showing Bee implementation of
the most complex primitives, those related to blocks. We
shall first give an overview of block mechanisms in Bee.
We already showed the implementation of #value. Here
we focus in the most difficult to implement piece, which is
related to #ensure:. Consider the code

workSafe: aBlock
[ aBlock value ] ensure: [ resource free ].

The meaning of this method is that after aBlock value is
run, #free must also be run, no matter what happens in the
block. To better understand the problem we can think how
the stack looks like just after aBlock value, and how it will
evolve. Somebody has called #workSafe: passing a block.
To give a view of some of the different possibilities let’s just
assume it was:

sendWorkSafe
ˆself workSafe: [ a == b ifTrue: [ˆself] ]

In the stack we have #sendWorkSafe: frame, followed
by #workSafe: frame. Next will be #ensure: frame. We can
ignore what it does for now and assume that after a few
extra frames aBlock frame will be placed in the top of the
stack. The complete stack is shown in figure 4. Now, if a
equals b, the ifTrue: branch will be executed, returning from
#sendWorkSafe method. In stack frame terms, this means
that stack should be unwound until #sendWorkSafe frame
is found, and finally that frame should also be popped, re-
turning control to #sendWorkSafe sender. But as there is an
ensure in between, unwinding should pause when reaching
the ensure stack frame, the ensured block should be executed
and only after that unwinding should be continued. In the
case that a was not equal to b, aBlock should finish its ex-
ecution normally, and control should flow back to #ensure:
normally, where it will activate the ensured block and return.

To allow the first case, #ensure: marks the stack to indi-
cate an unwind stop point. In the case of premature return
from a block, the stack will be traversed to find the returning
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Figure 4. Stack frame layout after aBlock activation

method’s frame. If a marker is found before that unwinding
will stop. Here we show the code run when returning from a
block.

BlockClosure>>#return: result
| home environment saved frame |
home := self methodEnvironment.
home == nil ifTrue: [ˆself sendCantReturn].
frame := BeeFrame current.
[

frame moveNext.
frame isZero ifTrue: [ˆself sendCantReturn].
frame hasBlock ifTrue: [

saved := frame savedEnvironment.
environment := frame environment].

frame hasMarker
ifTrue: [ˆself unwindUntil: frame context: saved

returning: result].
environment == home]
whileFalse: [].

saved == nil ifFalse: [saved restore].
ˆframe current

dropUpperContextsReturning: result
popping: self method argumentCount asNative

a BeeFrame is a reusable stack frame reification. When
initialized to current, it points to the top of the stack. It
can be moved next to point to the next frame, and eases a
lot the manipulation of stack frames. The #return: method,
unwinds frame by frame looking for a marked frame or the
returned method’s frame. In the latter case it will drop all
frames up to that point.4 In the former, it will unwind just
until the marker:

BlockClosure>>#unwindUntil: frame context: context
returning: result

frame firstTemporary: self; receiver: frame nextInFrame
receiver.

context == nil ifFalse: [context restore].
frame previous dropUpperContextsReturning: result

popping: 0 asNative

The underprimitive used to drop stack frames is the same.
This last method also does two modifications to the frame to
be activated: changing its receiver and its first temporary. To
explain why this is needed, we first show how the stack is
marked:

4 When walking the stack it will eventually find the method’s frame, which
has pushed an environment that is the same than the block’s home



BlockClosure>>#setUnwind: twoArgumentBlock
| context result |
result := self valueMarked.
context == nil ifFalse: [twoArgumentBlock value: context

value: result].
ˆresult

BlockClosure>>#valueMarked
| receiver frame |
self argumentCount = 0 ifFalse: [ˆself arityError].
frame := BeeFrame current moveNext.
receiver := frame receiver.
frame receiver: FrameMarker.
receiver transferControlTo: self code

#setUnwind: method marks the stack. Notice that con-
text, the first temporary is never directly assigned but
checked for nil. Now remember the previous snippet of code,
when unwinding to the marked stack frame. That code sets
the first temporary of the frame, effectively making it not
nil. Then, if context is not nil, it means the stack was un-
wound. If nil, there wasn’t any non local return and the re-
sult is returned. The two argument block is then a block that
is executed on marked stack unwinding. #ensure: uses it
accordingly to guarantee that the ensured block is always
executed.

BlockClosure>>#ensure: terminationBlock
| result |
result := self setUnwind: [:context :return |

terminationBlock value.
context return: return].

terminationBlock value.
ˆresult

Finally, #valueMarked code is similar to #value, but it
takes the receiver and overwrites it with the marker. This
is fine, as #valueMarked receiver can be restored from the
previous stack frame (it is always sent by the same block).

4.4 Modularity
The strongest design principle behind Bee is minimality.
Every aspect is split into smaller pieces as much as possible.
Bee is divided into a very small kernel library, and a set of
other libraries that can be loaded at runtime. Bee is self-
hosted. This means it doesn’t need to run on top of a Virtual
Machine, all its runtime support is written in Smalltalk.

Bee libraries. Bee code is distributed through Smalltalk
libraries, which are binary files that contain objects, includ-
ing compiled methods and their native code.

Libraries are implemented as a heap of objects preceded
by a description of the heap. To make loading fast, objects
are stored almost as they will lay out in memory after loaded.
The kernel includes a library loader, so it knows how to

take the objects out of the library and how to plug them to
the system. New classes are added to the Smalltalk global.
New methods of already existing classes are inserted into
their respective method dictionaries. All the needed actions
are carried out to ensure that after loading the system stays
consistent. Because of being binary based, library load time
is small, compared to the time needed for compilation and
nativization.

Bee kernel. Bee pushes Smalltalk modularity to new lim-
its. Its kernel doesn’t include a Smalltalk compiler, a na-
tivizer, or a garbage collector. All of these functionalities are
optional, and can be quickly loaded at runtime through li-
braries.

Bee is distributed as a native executable file. This file con-
tains inside a kernel library with the main Smalltalk objects
and code. The kernel library format is the same than the one
used for any other library. The only difference is that it is
packed inside a windows PE executable and that it contains
no references to external objects. This kernel includes the
minimal objects needed to be self-hosted. Main classes are
placed in kernel, with their main methods. Methods contain
their already nativized machine code. This is key for self-
hosting. The entrypoint of the PE file is set to point to the
machine code of a bootstrapping method. When execution
starts, this method performs a basic initialization and then
looks at the command line arguments to know what to exe-
cute next.

In Bee libraries, methods can be stored with or without
their native code. Bee compiler and nativizer are placed in
separate libraries, not included in the kernel and loaded on
demand. Methods of libraries that include native code can
be directly executed without loading the nativizer library.
Libraries that don’t include native code require loading the
nativizer. When the nativizer is plugged, attempts to execute
methods that don’t contain native code automatically trigger
their nativization. Of course, the methods of the nativizer
library must be stored with their native code, as the native
code of the nativizer is required to nativize methods. If both
compiler and nativizer libraries are loaded, Bee will be able
to execute arbitrary strings of Smalltalk code. This kind
of modularity gives place to interesting possibilities. It is
possible to create minimal system that is dynamic and yet
doesn’t include a compiler nor a nativizer within itself. To
allow dynamism, the system could allow remote injection
of compiled methods with their native code into the system
from the outside world. This may prove useful for hardware
platforms were resources are scarce.

5. Current Bee development
Bee is implemented on top of another host Smalltalk. This
strategy lets us do development within a full blown envi-
ronment. Many pieces of the system can be developed and
tested in this environment. For example, Bee nativizer can
be configured to generate machine code compatible with the



host environment. This allows testing most, if not all the na-
tivizer functionality within the host.

In cases where testing within the host is not possible, we
still can write the code inside the environment, and generate
an executable file containing the kernel image and a library
with the tests. Testing is conducted from the host. From it we
spawn a Bee process, specifying the name of the test library
as a command line argument. Test libraries are constructed to
return value of 0 when the tests fail, or 1 if they succeed. Dy-
namism is transcendent, as changes done in the host environ-
ment can usually be tested immediately. Some other changes
require the regeneration of the test libraries, which happens
in just a few seconds. Only from time to time a change re-
quires writing the kernel bootstrap image, because the sys-
tem is split in libraries. Even in that case the time required is
small, a few dozen of seconds.

As of June 2014, we are not yet able to directly debug
Bee when running on itself. When this is needed, we re-
sort to native code debuggers and disassemblers. For typical
Smalltalk code, this will be solved after we plug the host’s
Smalltalk debugger and inspectors. Yet, a Smalltalk-written
native code debugger would also be helpful to debug low-
level code in a high-level environment.

In the previous iteration of Bee, a handful of garbage
collectors were implemented. This includes full space mark
and compact, and generational garbage collection. Yet, in the
current form of Bee, we haven’t finished plugging these col-
lectors to the system. Therefore, there is no garbage collec-
tion available at all, until we adapt the old collectors.

6. Performance
Bee has been written with functionality and code quality as
main priorities. Even though we haven’t focused in perfor-
mance yet, we still did implement some optimizations to ob-
tain good enough performance for development. The philos-
ophy has been to design the system with no inherent ineffi-
cient features, but to leave optimizations for later stages. The
flexibility of the system facilitates research in this area.

6.1 Lookup optimizations
Bee is not interpreted, but ahead and just in time nativized.
Besides, it utilizes monomorphic inline caches and different
send inliners to enable fast dispatch. Assembly send inliners
allow fast access to object headers, through directly writ-
ing machine code. Invoke send inliners provide for message
sends without lookup, which is needed for lookup. We have
taken advantage of this and configured the method nativizer
to always use invoke for a set of very frequently sent mes-
sages. Through careful profiling and benchmarking we were
able to remove the biggest performance bottlenecks.

The naı̈ve # lookupAndInvoke: method that was shown
in section 4.1.3 was improved with a global lookup cache
that speeds up lookup in the cases where mononomorphic
inline cache fails. Currently we know that lookup is still a

bottleneck, and we are working on the implementation of
different optimizations to boost performance. When global
cache fails standard lookup is done. Standard lookup is ex-
tremely slow, because it performs a linear scan in the method
dictionaries of the object’s behavior.

6.2 Optimizing compiler
The code generated by the JIT compiler is very efficient.
However, to boost performance further, hot code paths could
and should be made even more efficient. There is abundant
research in this area that guarantees that important speed
ups can be obtained. Adaptive optimization has been deeply
studied, specially on Self [5, 11, 12, 19].

We have implemented an optimizing compiler. This com-
piler is run only for sets of methods that are known to be
important performance-wise (for now, methods are selected
manually). The optimizing compiler starts from an abstract
syntax tree to construct an SSA-based call-flow graph of
intermediate instructions [16, 18]. Through many stages it
transforms this intermediate representation to finally emit
native code. The different stages include speculative method
inlining, peephole optimization, register allocation to finish
in machine code emission. While still in early stages, this
compiler has already provided a noticeable boost in perfor-
mance.

6.3 Benchmarks
To measure performance we have run two different sets
of benchmarks an compared the results against two other
Smalltalk implementations: the host Smalltalk and Pharo [4].
In the case of Pharo, we have both run benchmarks with and
without the JIT compiler.

The benchmark set is small but gives a view of the current
Bee efficiency and also a preview of feasible performance
levels that can be expected in Bee.

Slopstone is a well known Smalltalk benchmark that
measures low-level operations as integer addition, block
activation, object creation, and others. We split the results
to give a better overview and also added some new sub-
benchmarks to inquire about specific performance bottle-
necks. Integer and float addition were tuned to run more
iterations than in default Sloptone, because their execution
time was so small that could not be correctly measured.

Some low-level performance details come to light in Fig-
ure 6.3. Results in this benchmark are highly diverse. On
many cases Bee is between 3X and 6X slower than the
host environment, with some notable exceptions. On the
bright side, inline jitting makes integer addition even faster
than the host virtual machine. On the other hand there are
some notorious bottlenecks present on float operations, per-
form, monomorphic object creation and polymorphic ob-
ject creation5. This last case is extremely slow because the

5 With this we refer to creating objects of different classes
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Figure 5. Normalized Slopstone execution times , relative
to host virtual machine (lower is better).

monomorphic inline cache is not able to bear efficiently with
polymorphic message sends.

Smopstone measures medium-level Smalltalk opera-
tions, which include recursive block and method calls, col-
lection building and enumeration, streaming, and sorting. In
a lower level, it performs arithmetic operations (mostly in-
teger, with some fractions and floats), string manipulation,
and streaming. As with Slopstone, we split the benchmark
results to give a better overview.

In the case of medium-level operations we get an overall
slowdown of around 12X, as shown in 6.3. This falls in
line with the results of the previous benchmark if we take
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Figure 6. Normalized Smopstone execution times , relative
to host virtual machine (lower is better).

into account that the slowest results highly drag performance
down.

7. Related work
Squeak[13] is a self-hosted Smalltalk implementation. The
code of the virtual machine is written in slang, a subset of
Smalltalk. Slang code is automatically translated to C source
and then compiled with a C compiler, allowing for very good
performance. Yet, the code written in slang is not object
oriented and more difficult to understand and modify than
standard Smalltalk code. Programmers have to be familiar
with C programming, compiling and debugging tools.

PyPy[17] is another example of a self-hosted virtual
machine. PyPy consists of an interpreter and a translation
framework. The interpreter code is written in RPython, a
restricted subset of Python. Unlike with slang, PyPy’s trans-
lator operates on RPython source through many stages of
analysis and optimization. Different backends allow genera-
tion different outputs. The main backend writes C sources.

Jalapeño/Jikes RVM [2, 3] is a research project that im-
plements a Java virtual machine in Java. Jikes implements
different types of garbage collectors, supports multithread-
ing and has different compilers that provide for adaptive op-
timization and highly efficient code. Access to object head-
ers is done through Magic, a set of methods that are not im-
plemented in Java but assembly, and allow direct access to
memory and processor control.



Maxine JVM [21] is another Java virtual machine done
in Java. While it shares many ideas with Jikes, Maxine dis-
tinguishes itself by its inspector, which lets the developer
visualize and debug all the state of the virtual machine.

Tachyon [7] is a self-hosted Javascript virtual machine.
Tachyon does not use a bytecode representation, it compiles
directly to machine code. The compiler operates on different
intermediate representations, applying different optimiza-
tions. To augment the semantics of the language, Javascript
syntax is extended with type annotations and primitives that
allow direct access to memory.

Klein is a metacircular virtual machine for Self written in
Self[6, 20]. It enjoys a fully object-oriented design. Through
the use of mirrors it achieves great code reuse and is able
to access meta-object properties. Thanks to this, Klein can
be remotely debugged from other PCs. Reactivity is highly
appreciated and the environment provides many tools to cre-
ate the illusion that the system is made of tangible, physical
stuff.

8. Conclusions
Bee project was started with the implementation of a JIT
compiler that recreated the host virtual machine’s one but
that was written in Smalltalk. The success in doing so
brought the question of what other parts could also be di-
rectly implemented within the language. Access to the JIT
compiler allowed the usage of underprimitives, which lever-
aged the implementation of the rest of the system. Today,
Bee is far from finished, yet we know all required function-
alities can be implemented. Furthermore, the resulting code
is fully object oriented and can take advantage of all the
benefits that a high-level environment brings.

The main remaining question to be answered is what
is the maximum performance to expect from the system.
We believe that the answer to that question will be highly
positive, and that we will be able to unravel the mystery very
soon.

9. Future work
Being such a big project, many ideas are still left to be
explored. Garbage collection is ready to be plugged to the
system, but requires some modifications to allow running in
the self-hosted bootstrapped system.

Debugging of the self-hosted system is also not possible.
Browsers, inspectors and debuggers are available while in
the hosted system but not in the bootstrapped one. To make
them work we have to implement a messaging system that
wraps the one brought by the hosted environment.

We also plan to support out-of-process debugging and in-
specting. This will allow us to run on resource-limited sys-
tems via remote debugging, even in places where graphical
environments are not be supported.

Current implementation of Bee is more than 10x slower
than the hosted environment, while only implementing small

optimizations. Work on polymorphic inline caches, and the
optimizing compiler will provide a big boost in performance.

Bee has initial support for native multithreading. While
we have not deeply explored the subject, we believe this will
provide bigger performance improvements and also ease
the implementation and exploration of non-blocking and
asynchronous message sending.
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Abstract
Most of today’s general-purpose programming languages in-
clude primitives for concurrent and parallel software devel-
opment. However, they fail to provide mechanisms for rea-
soning about the complex interactions of the systems com-
ponents. Amongst different formalisms, used for capturing
the emerging and intricate characteristics of concurrent and
parallel systems, the logical time model is widely used and
proved useful in hardware, embedded and distributed sys-
tems domains.

In this study, we propose a meta-described clock-constraint
engine, which embeds a formal model of logical time into
the Smalltalk general-purpose language and environment.
This engine, named ClockSystem, relies on the primi-
tives provided by Clock Constraint Specification Language
(CCSL) to provide a simple yet powerful toolkit for logical
time specifications. ClockSystem extends the CCSL lan-
guage, through an automata-based approach, with domain-
specific user-defined operators and provides an embedded
DSL for writing executable specification in a language close
to the abstract CCSL notation.

The approach is symbiotic and benefits from the com-
plementarity of the two languages. CCSL gains a readable
syntax for library specification and the power of a highly
dynamic general-purpose language and development envi-
ronment. The Pharo Smalltalk environment acquires a very
expressive time reasoning formalism, which promises im-
proved software quality through formal verification and
highly automated testing and monitoring strategies.

Categories and Subject Descriptors D.2.1 [Software Engi-
neering]: Requirements/Specifications—Languages; D.2.4
[Software Engineering]: Software/Program Verification—
Model checking

Keywords logical time, concurrency, domain-specific lan-
guage

1. Introduction
In the context where multi-core heterogeneous computing
became ubiquitous, and more and more support for concur-
rent and parallel applications is offered by todays program-
ming languages. All application designers are faced with
challenges that were once specific to the hardware, embed-

ded or distributed domains. Amongst these challenges, there
is the need to reason about time to create different levels of
consensus between concurrent and parallel execution threads
that have to communicate, to synchronise or to access shared
external resources.

In the computer-science literature, different interpreta-
tions of time are studied, each one addressing particular as-
pects of the ”real” time, which is known also as physical
time. Amongst these interpretations, the logical clock model,
introduced by L. Lamport [14], abstracts the notion of phys-
ical time to the partial order of events. This theory of logical
time evolved since its beginnings, and today it is widely used
in the hardware, embedded and distributed systems theory
and practice.

General-purpose programming language, in their stan-
dard settings, offer a large variety of models, techniques
and primitives to address concurrent and parallel program-
ming. However, they fail to provide a mechanism for ”time-
aware” modeling, which proved very useful in these other
disciplines of computer science and engineering.

Moreover, it is interesting to see that even the relatively
young field of Model-Driven Engineering (MDE) recog-
nised the importance of time and integrated it through the
Clock Constraint Specification Language (CCSL) [1] in the
UML Marte profile [20], which targets critical system mod-
eling.

The CCSL formalism departs from the traditional ap-
proaches by offering a simple yet powerful logical time spec-
ification formalism, through a declarative domain-agnostic
language. This formalism is integrated in the MDE infras-
tructure and tools through the TimeSquare toolkit [7] which
provides a concrete-syntax for the CCSL language and a set
of analysis tools targeting it, eg. simulator, model-animator.
However, while the TimeSquare toolkit delivers powerful
tools for system design and analysis it fails to offer a simple
and readable syntax for specifying domain-specific libraries
on top of CCSL. Moreover, the development efforts behind
the TimeSquare toolkit are geared towards MDE users and
besides offering the possibility to execute java code associ-
ated with clock events, it seems to lack an API for embed-
ding CCSL specifications in Java, its implementation lan-
guage [7].



In this study we introduce a meta-described clock con-
straint engine, named CLOCKSystem, which addresses these
problems by providing an embedding of the logical time for-
malism in the Smalltalk object-oriented and general-purpose
programming language and environment. Our system de-
livers an automata-based interpretation of the CCSL lan-
guage formalism and allows extending the language con-
structs with user-specific primitives. Moreover, we have
created an embedded domain-specific language (eDSL) for
CCSL, which, through the use of the Smalltalk’s flexible lan-
guage, provides a simple, readable and extensible concrete-
syntax for logical time specification. Furthermore, we ar-
gue that this eDSL is much closer to the abstract ”pseudo-
mathematical” notation presented in the CCSL literature
than the one integrated in the TimeSquare toolkit.

One important goal behind our approach, besides embed-
ding time in a programming language, is to offer the tools for
opening the toolbox and enable to explore new ideas, iden-
tify new problems that could be addressed by such a toolkit,
and provide a way to explore these new (or old for that mat-
ter) usage scenarios. To emphasise the advantages of our ap-
proach, some usage scenarios enabled by CLOCKSystem are
presented. Amongst these, the possibility to exhaustively ex-
plore the state-space of a given specification paves the way
to verification by model-checking [3]. The scope of this ver-
ification can either be the CCSL specification alone or its
composition with the time-constrained-system, which how-
ever has to be expressed in a formal language. A second us-
age scenario, namely Design-Space Exploration, is enabled
by the complementarity between the declarative CCSL for-
malism, enabling the simple encoding of specifications, and
the imperative nature of Smalltalk, which offers the power
of a general-purpose programming language for ”scripting”
different analyses phases searching throughout the solution-
space. Testing and Monitoring are other usage scenarios in
which the CLOCKSystem specifications are simply seen as
the compact encoding of a test case which can, also, be de-
ployed in production and which follows the system execu-
tion (through events) constantly checking the coherence be-
tween the specification and the real execution observed.

To better illustrate our approach, throughout this study
we use an example based on a logical clock specification
of a simple Synchronous Data-Flow model of computation,
which is inspired from [18].

The main contributions of this study are:

• The integration of a logical clocks formalism into a
general-purpose object-oriented programming language
like Smalltalk;

• The design of an small and extensible logical time kernel,
which, while based on the CCSL language, extends its
expressiveness though the addition of automata-based
user-defined primitives;

• The creation of a readable and extensible embedded DSL
for the creation of domain-specific parametric libraries
of clock relations. This eDSL uses simple Smalltalk
message-sends for creating a skinnable language on top
of a simple core interchange format;

• The introduction of a several scenarios for which ClockSys-
tem has the potential to facilitate formal methods inte-
gration, and ultimately the creation of better software
applications.

This study is structured as follows. Sec. reviews the main
motivations behind our approach while introducing some of
the related work. The CLOCKSystem eDSL is introduced in
Sec. 3 and it is compared with the abstract CCSL and the
TimeSquare notations. Sec. 4 presents the intuition behind
four different usage scenarios enabled by our approach. Sec.
5 discusses some details of our toolkit, presenting its core
structure, the extension mechanism, an interchange format
and the details of our eDSL concrete-syntax before briefly
introducing the semantics. This study concludes in Sec. 6
overviewing some future research directions.

2. Motivations and Related Work
This sections overview the main motivations and princi-
ples that have driven our approach. First the notion of time
and some of its interpretations are briefly overviewed. Then
the Clock Constraint Specification Language is introduced
along with the TimeSquare toolkit, the de-facto CCSL im-
plementation. Some of the limitations of the current tools
are presented, emphasising the need for an user-friendly
concrete-syntax and a more natural embedding in a general-
purpose programming language. Finally, some technical ad-
vantages emerging from the complementarity between a
declarative language, such as CCSL, and an imperative high-
level language, such as Smalltalk, are presented.

2.1 From Time to Logical Time
To cope with the complexity of the intricate relations be-
tween time and other concepts that they manipulate, differ-
ent disciplines often use particular interpretations of time.
Schreiber addresses some of the fundamental issues of the
notion of time, in the context of computer science and engi-
neering, in [24] .

A very important distinction that govern much of our cur-
rent view of time is the distinction between the quantita-
tive notion of time in physics, sometimes referred as ”phys-
ical time” in computer science literature, and other more
abstract models capturing only some characteristics of the
physical time and its influences (ex. relations). For example,
in today’s digital integrated circuits, time is approximated
using the discrete notion of clock. A clock is a particular
type of circuit that oscillates periodically between two dis-
tinct values used to coordinate the operation of digital cir-
cuits. To cope with their complexity, the designers divide
the circuits in different clock-domains each one driven by an



independent clock, hence creating multi-clock systems, of-
ten called polychronous [11]. The communications between
these clock-domains are based either on clock synchronisa-
tion or on handshake protocols. Both these techniques are
equally found in concurrent and distributed systems and pose
unique challenges for reasoning about the system actions. In
these two particular cases, what counts is not so much the
time itself (its physical representation, nor its discrete inter-
pretation with clocks) but the events of interest (sending/re-
ceiving a value, waiting for a partner, etc) and their partial
ordering. To capture these aspects, in his seminal work [14],
L. Lamport introduced the notion of logical clocks which
abstracts away the notion of physical time to a partial order
of events of interests. The connection between these logical
clocks and the causal relations between the corresponding
events identified by R. Schwarz et al. [25] gave rise to a rich
theory enabling to characterise the behavior of distributed
systems. Moreover, since the nature of the events of interests
is not necessarily time related, this theory enables reasoning
about other physical quantities and concepts. A typical ex-
ample is the notion of deadline which can be expressed ei-
ther as the process should stop after 15 sec. or the process
should stop when reaching 80 degrees celsius. In the latter
case, we use a logical clock to follow the evolution of tem-
perature and stop the process when the deadline is met. This
generalisation of logical clocks to other physical or abstract
quantities (modelled as events) is known also as Multiform
Time [21].

Today, highly-complex multi-core computing architec-
tures are ubiquitous. They enable the concurrent and/or par-
allel execution of thousands (if not millions) of software
tasks (be them processes, threads, actors, etc.). In this con-
text, the need for time-driven reasoning permeates more and
more from the hardware and distributed system domains
to mainstream software development. Take for example the
highly complex interactions between the execution threads
of a typical web-browser. In these cases relying on logical
clocks as a model of time has the potential to greatly improve
software quality by enabling formal reasoning and verifica-
tion. However, while all of todays general-purpose program-
ming languages include primitives for concurrency and par-
allelism through different mechanisms, in standard settings,
none of them offers support for time-aware modelling, rea-
soning or verification that proved very useful in the context
of hardware, distributed and realtime system modelling and
implementation. The CLOCKSystem language and toolkit
tries to address this shortcoming by embedding a logical
time formalism, namely CCSL, into the Smalltalk general-
purpose object-oriented language and environment.

2.2 Clock Constraint Specification Language
The notion of Logical time is at the core of synchronous
languages, such as Signal [15] and Lustre [12], and they
are extensively used for the design and implementation of
hardware and embedded real-time systems. However, di-

rectly integrating such approaches into a general-purpose
programming language posses many challenges, mainly due
to the complexity of these languages and the presence of
technical artefacts coming from the embedded domain. The
CCSL language [1], was designed to represent time relations
through the logical time formalism following a high-level
domain-agnostic approach. Hence, it makes an ideal target
for embedding, since it is conceptually simple, and free of
technical-space artefacts.

The core abstraction of CCSL reposes on the notion of
clock, viewed as a strictly ordered sequence of instants
(ticks), and the explicit descriptions of the relations between
the instants of a set of clocks. There are two principal classes
of relations: causal and temporal. The basic causal relation is
the precedence relation (a � b) implying that the instants of
the clock a causes the instants of clock b. The main temporal
relations are the: coincidence (a = b), meaning that both the
instants of a and b occur at the same time or do not occur at
all; strict precedence (a � b), meaning that the instants of
a always occur before the ones of b and never at the same
time; and the exclusion (a# b), stating that the instants of a
are mutually exclusive with the ones of b. Besides these core
relations, CCSL defines a subclocking relation (a ⊂ b) used
for specifying that the set of instants of clock a is actually a
subset of the instances of clock b – whenever an instant of a
occurs, an instant of b occurs.

To enable the characterization of complex clock specifi-
cations, the CCSL language introduces a number of clock
expressions that, as opposed to the relations, enable to de-
rive new clocks based on the existing ones. Some of these
expressions are: the intersection (a ∗ b), which creates a
clock having the set of instant equal to the intersection of the
set of instants of the arguments; the union (a + b), which de-
rives a new clock based on the union of the set of instances
of the arguments; the infimum (a ∧ b) and supremum

(a ∨ b) which defines a new clock faster/slower than both ar-
guments (coincident with the fastest/slowest); the waiting

(a $ n), creating a clock that ticks only after n ticks of the
argument clock.

Another interesting, and rather complex expression is the
clock filtering (a▼o.(p)!) that creates a new clock coinci-
dent with explicitly selected instants of the argument clock
a. These instants are selected based on a specification en-
coded as a binary word (o.(p)!) composed of two distinct
binary sequences: the offset (o), seen as a static non re-
curring sequence, and the period (p) a infinitely repetitive
binary word. The instants of this clock follows closely the
structure of these two binary words. For each instant of the
argument clock a we move to the right in the sequence, if the
bit is set to 1 the resulting clock should tick if not it should
not. Once at the end of the periodic sequence we restart from
the beginning of this sequence.

The TimeSquare toolkit [7] is the de facto standard toolkit
for the specification and the analysis of CCSL logical time



specifications. It is implemented as a model-based envi-
ronment integrated into the Eclipse platform, and benefits
from a number of model-driven technologies. TimeSquare
proposes a concrete, textual syntax for the CCSL language
based on XText DSL framework [9]. Besides, TimeSquare
implements a CCSL constraint resolution engine for simu-
lating the specifications, integrates model-animation facili-
ties and offers the possibility to execute arbitrary Java code
symbolically associated to clocks from the specification.

The CCSL language provides a very expressive formal-
ism for reasoning about logical time and the intricate rela-
tions between events in real systems. Moreover, TimeSquare
enables the definitions of domain-specific libraries build
from the primitive operators. However, in some cases, the
declarative and sometimes complex nature of the CCSL
primitive operators renders the creation of these libraries
difficult, and even inefficient with respect to the complex
constraint resolution policy needed for implementing its se-
mantics. To address these issues, in CLOCKSystem we in-
troduce the possibility to extend this core language, through
domain-specific user-defined automata. A side-effect of this
capability is the possibility to explicitly meta-describe all
CCSL primitive operators and include them simply as a stan-
dard library, instead of hard-coding their exact semantics in
the execution engine.

Furthermore, the XText-based concrete-syntax integrated
in the TimeSquare toolkit, while having its advantages, ren-
ders the task of library specification difficult due mainly to
an important syntactic overhead compared to the abstract no-
tation presented in the literature. CLOCKSystem addresses
this issue by providing an extensible, simple eDSL imple-
mented through Smalltalk messages which through the use
of syntactic synonyms can be adapted to domain-specific vo-
cabularies or even user preferences. Moreover, it proposes a
simple interchange format as a common basis for bridging
the gap between possible vocabulary differences and for in-
teroperability with external environments.

2.3 Opening the toolbox
To achieve our goal of integrating logical time in a general-
purpose programming language, we need to open the tool-
box and expose the core of the formalism along with the as-
sociate tooling to the host environment. Through the eDSL
proposed by ClockSystem, which uses syntactically correct
Smalltalk code for CCSL specifications, we move one step
closer towards this goal. However, the real gain comes from
the new usage scenarios that emerge due to the possibility
to run arbitrary pre-preprocessing and post-processing steps
on any given specification, to link logical time-models with
a dynamic environments such as Smalltalk and to provide
the application developers with tools for reasoning about in-
tricate concurrency problems. We believe, that an approach
such as CLOCKSystem can serve as a basis for studying and
understanding better the relations between our programming
environments and the highly complex systems on which they

run on. At the same time, CLOCKSystem is an experimen-
tal platform for improving the quality of current models of
time which have a number of shortcomings, such as: a) poor
scalability for large models; b) poor support for dynamic
systems.

3. CLOCKSystem for CCSL Users
An important requirement for implementing a modelling
language as an embedded DSL (eDSL) in a general-purpose
programming language is that the embedding should reduce
the syntactic overhead to a minimum. Hence, providing a
comfortable and familiar environment for the DSL users,
while at the same time enabling the eDSL designers to focus
more on the language features than on the grammar develop-
ment and parsing. An embedding is not always perfect, and
often some amount of syntactic overhead is inherent. To em-
phasise our results we compare our syntactic encoding of the
CCSL model with the abstract notation, introduced in differ-
ent papers, and the TimeSquare language. Towards the end
of this section, we show that in the cases where our encod-
ing fails to match the abstract-notation it reuses the textual
encoding of TimeSquare. Moreover, our lightweight syntax,
based on message sends, enables the user to easily define
keyword synonyms that can help to close the gap between
a given domain-specific vocabulary and our formalism. We
illustrate the results of our embedding of CCSL in Smalltalk
(Pharo dialect) through a simple example inspired from [18].
This example is focused on the modeling the control aspects
of Synchronous Data-Flow (SDF) applications with CCSL.

3.1 Case Study: Synchronous Data-Flow
SDF graphs are an abstraction for modeling data-flow com-
putations that enables static task scheduling. This model en-
codes data-flow computation as a graph where nodes repre-
sent the computations (actors) and the edges represent the
data dependencies. The designer associates to each compu-
tation block the static rates of input consumption and out-
put production for each input/output dependencies. A sim-
ple SDF model can thus be represented with a graph with
the edges labelled with 3-tuple (outputRate, initialTokens,
inputRate). Note that here the storage capacity of each edge
is infinite, as in the case of Kahn networks [13].

The execution of a SDF application is governed by the
following rules:

• An actor can execute (is enabled) only when all its re-
quired inputs are available. An input is available when
the number of tokens (data samples) in the incoming edge
is larger or at least equal to the predefined inputRate;

• The execution of an actor results in the consumption
of inputRate tokens from all incoming edges and the
production of exactly the outputRate tokens on each of
its output edges. The tokens produced by one execution
are buffered on the outgoing arcs in a First-In First-Out
(FIFO) manner;



•
initialTokens is a statically defined property of edges
defining the number of tokens available at the beginning
of the execution;

• The execution of any actor is not dependent on the token
values, meaning that the control is data-independent.

In [18] the authors describe one possible CCSL encod-
ing of these execution rules using three clock constraints
describing the allowed actor firings. This encoding asso-
ciates to each actor a CCSL clock representing the execu-
tion of the actor. The FIFO channel (edge) between two ac-
tors are managed with another two clocks: read and write.
The read/write clock ticks whenever one input/output is
added/removed to the FIFO. Then for each channel three
constraints on these clocks are added: 1) input constraint,
governing the relation between the actor execution and the
inputRate tokens available at the input; 2) output con-
straint, governing the relation between the actor execution
and the outputRate tokens produced; 3) token constraint,
encoding the number of available tokens in an arc as the dif-
ference between the number of read and write operations.

3.2 Constraint Definition Syntax: Comparative Study
The CCSL encoding of the input constraint is specified in
[18] as a precedence relation using one precedence relation
and one filteredBy expression. Listing 1 shows the encod-
ing of this constraint using the abstract notation. The intu-
ition behind this constraint is that the actor execution should
be preceded by the addition of at least inputRate tokens in
the channel.

Listing 1: CCSL specification for the SDF input constraint
1 d e f i n p u t ( c l o c k a c t o r , c l o c k read , i n t i n p u t R a t e )�(read▼.(0inputRate−1

.1)!) � actor
In CLOCKSystem the input constraint (from Listing 1) is

expressed by defining a message input:read:inputRate:
implemented like in Listing 2, where actor and read are
clocks and inputRate is a number. The message period:
can be seen as syntactic sugar defined to create a filterBy

expression without an offset. The binary word required by
the expression is created by using classical Smalltalk Array
concatenation (the for: message send to a number X cre-
ates an array with n identical elements equal to X). The <
message represents exactly the precedence relation as the �
abstract notation.

Listing 2: CLOCKSystem specification of the SDF input
constraint
i n p u t : a c t o r r e a d : r e a d i n p u t R a t e : i n p u t R a t e

( r e a d p e r i o d : (0 f o r : ( i n p u t R a t e - 1 ) ) ,{1} ) < a c t o r

The reader should notice that the principal reason for
the syntactic overhead in Listing 2 comes from the repre-
sentation of special characters and notations, such as ▼,
and power notation x

y as ASCII encoded message sends

(period:, for: ). Besides that, there are two Smalltalk-
specific artefacts, namely the colon separating parts of the
message symbol, and the comma that replaces the dot char-
acter in the abstract notation. These represent a small syn-
tactic overhead that will probably not be present in a CCSL-
specific keyword-based language grammar. Notice also that
the 0 for: (inputRate-1) does not use the common ˆ
symbol used for power notation in some general purpose
programming languages since it is a Smalltalk reserved char-
acter. Nevertheless, we consider that in this case our notation
follows rather closely the abstract one, especially when com-
pared to the rather verbose language used in TimeSquare for
the same purposes, see Listing 3. We will leave to the reader
the exercise of understanding the meaning of that Listing.

Listing 3: TimeSquare specification of the SDF input con-
straint
R e l a t i o n D e c l a r a t i o n I n p u t (

a c t o r : c lock ,
3 r e a d : c lock ,

i n p u t R a t e : i n t )
R e l a t i o n D e f i n i t i o n I n p u t D e f [ I n p u t ]{

Sequence ByInpu tRa t e =
( I n t e g e r V a r i a b l e R e f [ i n p u t R a t e ] )

8 E x p r e s s i o n r e a d B y I n p u t R a t e = F i l t e r B y (
F i l t e r B y C l o c k −>read ,
F i l t e r B y S e q −>ByInpu tRa t e )

R e l a t i o n inpu tRa t eTokenExec [ Causes ] (
Le f tC lock−>r e a d B y I n p u t R a t e ,

13 R igh tClock−>a c t o r )
}

Listing 4 shows the composition of the CCSL relations
needed for representing the SDF semantics. We will not
describe the meaning of this listing since it is very well
explained in [18]. However, for comparison we show the
CLOCKSystem equivalent in Listing 5, and note the small
syntactic overhead, again compared to the TimeSquare spec-
ification which amounts for almost 100 lines of code and was
not included for obvious reasons.

Listing 4: CCSL specification of the SDF semantics
1 d e f edge ( c l o c k sou rce , c l o c k t a r g e t ,

i n t out , i n t i n i t i a l T o k e n s , i n t i n ) �
c l o c k r e a d
c l o c k w r i t e
source = (write▼.(1.0out−1)!)

6 ∧ write � read $ initialTokens∧ (read▼.(0in−1.1)!) � target
Listing 5: CLOCKSystem specification of the SDF semantics
edgeFrom: s o u r c e t o : t a r g e t

o u t R a t e : o u t i n i t i a l : i n i t i a l T o k e n s i n R a t e : i n
3 | r w |

r : = s e l f l o c a l C l o c k : # r e a d .
w : = s e l f l o c a l C l o c k : # w r i t e .

s o u r c e=== (w p e r i o d : ({1} , ( 0 f o r : ( o u t - 1 ) ) ) ) .
8 w < ( r w a i t F o r : i n i t i a l T o k e n s ) .

( r p e r i o d : (0 f o r : ( i n - 1 ) ) , {1} ) < t a r g e t



Figure 1: An example of an SDF graph

3.3 Constraint Instantiation
In the last section we have presented the creation of a li-
brary operator for encoding SDF execution as CCSL clock
and clock constraints. In this section, we illustrate the usage
such an operator in the case of the simple SDF application in
Fig. 1. This example consists of three actors A, B, and C con-
nected with three edges labelled as follows: EAB(1,0,2),
EBC(2,0,1), ECB(1,2,2).

Using the CCSL abstract notation it suffices to instan-
tiate the edge constraint as follows: edge(a, b,1,0,2) ∧
edge(b, c,2,0,1) ∧ edge(c, b,1,2,2). In CLOCKSystem,
the same effect can be achieved through a script like the
one in Listing 6. For brevity, we omit the clock definitions
in the CCSL case (one for each SDF actor: a, b, c). The
CLOCKSystem notation is more verbose compared to the
abstract one, which is due to the use of multi-arguments
message sends. In our case, this overhead is not strictly nec-
essary, and can be seen as a personal choice, but we believe
that it improves the readability of our specifications. The al-
ternative would be to use an array encoding of the arguments
(such as edge ∶ {a.b.1.0.2}) which would be much closer to
the CCSL notation.

Listing 6: CLOCKSystem instantiation of the SDF con-
straints for the example in Fig. 1

1 s y s : = ClockSystem named: ’ s d f ’ .
a : = s y s c l o c k : #A .
b : = s y s c l o c k : #B .
c : = s y s c l o c k : #C .

6 s y s
edgeFrom: a t o : b o u t R a t e : 1 i n i t i a l : 0 i n R a t e : 2 ;
edgeFrom: b t o : c o u t R a t e : 2 i n i t i a l : 0 i n R a t e : 1 ;
edgeFrom: c t o : b o u t R a t e : 1 i n i t i a l : 2 i n R a t e : 2 .

In TimeSquare, the instantiation is done in a similar way,
however with some complications brought by the integration
with the UML Marte profile (ex. the clocks have references
to the model elements). In [6] the authors presents an exten-
sion of the OCL language, named ECL, enabling the creation
of CCSL instantiation scripts that would then be executed
on particular model instances. For this aspect the similar-
ity between OCL constructs with the traditional Smalltalk
API (especially the Collection API) makes us conclude that
the user of CLOCKSystem has at his disposal a much richer
”scripting” language which can be used for the same pur-
poses as ECL.

Table 1: Syntactic differences between CCSL notation,
CLOCKSystem and TimeSquare.

Name Notation CLOCKSystem TimeSquare
Subclocking a ⊂ b a subClock: b SubClock(a, b)
Coincidence a = b a === b Coincides(a, b)
Precedence a � b a <= b NonStrictPrecedes(a, b)

Strict Precedence a � b a � b Precedes(a, b)
Exclusion a # b a <> b Exclusion(a, b)

Expressions
Inf a ∧ b a inf: b Inf(a, b)
Sup a ∨ b a sup: b Sub(a, b)

Defer a (ns)� b a defer: b for: ns Defer(a, b, ns)
Sampling a� b a nonStrictSample: b NonStrictSample(a, b)

Strict Sampling a→ b a sample: b Sample(a, b)
Intersection a ∗ b a ∗ b Intersection(a, b)

Union a + b a + b Union(a, b)
Waiting a $ n a waitFor: n WaitFor(a, n)

Preemption a � b a upTo: b UpTo(a, b)
Filtering a▼o.(p)! a filterBy: {o.p} FilterBy(a, b)

3.4 Syntactic Differences and Synonyms
To complete our comparison, Table 1 shows some of the
most important operators of the CCSL language using
the abstract, CLOCKSystem and TimeSquare notations. In
CLOCKSystem, the strict precedence, intersection and union
relation use the same notation as the CCSL description.
The precedence uses the widely accepted ASCII encoding
for ≤. For the coincidence and the exclusion relations dif-
ferent notations were used due to the use of = for equal-
ity checks in Smalltalk language, and the reserved use
of the # character. In these cases we also defined syn-
onym messages that reproduce the TimeSquare naming. All
other CCSL operators are encoded using a camel-case ver-
sion of the TimeSquare keywords. A particular case is the
defer:for: message, which uses a multi-argument mes-
sage for the same readability reasons we explained in the
case of edgeFrom:to:outRate:initial:inRate: (List-
ing 6).

The CLOCKSystem encoding of all CCSL operators as
message-sends enables the user to easily define keyword
synonyms by simply defining a new message that redirects
its arguments as needed to the provided primitives, see for
example Listing 7 showing 4 equivalent ways of creating a
strict precedence relation between two clocks a and b. This
feature is clearly a by-product of our embedding, however
it is very important for a modeling language as generic as
CCSL since it enables the users to adapt the specification
language to match the vocabulary of their domains of interest
or their personal choices.

Listing 7: Syntactic synonyms for a � b relation
a < b .
b > a .

3 a precedes: b .
sys tem relation: # s t r i c t P r e c e d e n c e clocks: {a . b}



(a) Periodic Trace Automaton
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(b) Periodic Waveform
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(c) Trace interpretation (21 steps)

Figure 2: Cyclic simulation trace and different visualisations
with CLOCKSystem for the SDF example in Fig 1

4. Beyond Standard Simulation
While different use-cases for CCSL were proposed in the
literature [17, 26], currently the main functionality imple-
mented in TimeSquare is the simulation of specifications,
with the possibility to animate different model elements by
associating clock ticks with the execution of particular func-
tions. In this section, we overview some extensions and new
usages that are enabled by our embedding in the Smalltalk
environment.

Cyclic Trace Interpretation. The CLOCKSystem simula-
tor implements a trace-based simulator. While executing a
given specification, it constantly verifies the existence of
loops back to an already seen system state, in which case it
can either stop the simulation reporting an infinite trace (in-
finite due to the possibility to loop-back an arbitrary number
of times) or it can continue, maybe choosing a different path.
Fig 2 presents the results obtained for the SDF example, in-
troduced in Fig. 1. The first visual representation of the ex-
ecutions trace, in Fig. 2a, offers an automaton view of the
simulation trace, while the second one in Fig. 2b) shows a
different waveform-like visualisation which uses the square
brackets to represent the unbounded repetition of the last 3
steps. Traditionally, the TimeSquare simulator is producing
a waveform trace similar to the one we present in Fig. 2c.
However, in our case this finite simulation trace was ob-
tained by the interpretation of the automaton presented in
Fig. 2a for exactly 21 steps, and not directly from the CCSL
specification.

Exhaustive Reachability Analysis and Model-Checking.
Besides the simulator, the CLOCKSystem toolkit provides
the possibility to perform exhaustive reachability analysis of
the CCSL specifications thus paving the way towards formal
verification of properties agains these specifications.

To better understand the importance of providing such fa-
cilities, consider for example the approaches taken in [26]
and [19] for model-checking UML Marte application re-
stricted by CCSL constraints. In these two cases, the au-
thors invested a lot of effort to encode (more or less man-
ually) the correct semantics of each CCSL operator in a for-
mal language, such as Fiacre [10], moreover the complex
constraint composition mechanism had to be implemented
in those languages. We believe that this process is cumber-
some, and prone to errors especially since these two formal-
ism are more adapted for asynchronous system modeling
and verification. As such, another degree of difficulty was
added by the interpretation of the coincident clock firings as
the interleaving of all events. Moreover the property specifi-
cation, and the result interpretation in these cases is difficult
since the resulting semantic encoding was polluted by the
semantics of the constraints and constraint composition en-
coding.

Relying on the exhaustive reachability results, we have
developed an interface with the OBP model-checking toolkit
[8] that enables the verification of UML models. To achieve
this, an UML model is transformed to a formal language (as
in the previous cases) and the resulting program is com-
posed with the reachability analysis results produced by
CLOCKSystem. To ensure the correct semantics for the com-
position, the results obtained with CLOCKSystem were post-
processed only for expanding the coincident relations (by
generating the correct interleaving)1. This approach enables
the verification of safety and bounded liveness property on
a subset of UML Marte constrained using CLOCKSystem
specifications.

Design-space Exploration. An important aspect during
system design is creating a feedback-loop between a given
system model and the analysis results. Conceptually sim-
ple, this process, known also as design-space exploration,
states that the analysis results should be taken into account
to improve the model. The automation of this process is hin-
dered, in the case of declarative languages, by the lack of an
adapted programming layer around the modeling language
and associated tools (solvers, simulators, etc.), which drives
the designers towards the use of complex and low-level
script-based solutions, which are hard to create and main-
tain. Embedded DSLs rely on host-language facilities for the
automation of such task, and, in the case of CLOCKSystem ,
the full power of the Smalltalk language and environment is
at user disposal.

Testing and Monitoring. In a concurrent software context,
the clocks could be seen as types of events which are pro-
duced during execution, then a CLOCKSystem specification
describes the set of valid relations between these events. In

1 We call coincident firings (relations) all cases where two clocks tick at the
same time. Visually these cases are represented by tuples like {A. C} in
Fig. 2a



this case, a program can be viewed as a high-level test spec-
ification, which encodes not only one valid execution path
but a set of paths. Integrating such approach into unit test-
ing frameworks such as SUnit does not pose any challenges,
however it can help detect subtle concurrency bugs in con-
current Smalltalk applications. In production, these specifi-
cations could be embedded into the deployed images to help
monitoring the application. Moreover, a counterexample, re-
sembling the traces in Fig. 2, can be generated to help un-
derstanding the cause of the malfunction.

5. The CLOCKSystem Toolkit
The CLOCKSystem language is an extension of the CCSL
domain-specific language (DSL). The implementation is
deeply embedded in Pharo Smalltalk environment. As an
embedded DSL, CLOCKSystem programs are encoded as
syntactically correct Smalltalk code, moreover its abstract-
syntax tree (AST) is exposed as plain smalltalk objects.
While benefiting from the CCSL simple but powerful ap-
proach for time reasoning, CLOCKSystem exploits the flexi-
bility of the Smalltalk language to provide a readable syntax
for the CCSL language, that can replace the current library
specification language integrated in TimeSquare.

The key ideas behind our approach are: a) provide a
minimal kernel for experimenting with logical time for-
malisms in Smalltalk; b) offer a flexible and simple lan-
guage for extending the kernel with user-defined event re-
lations; c) enable the development of new analysis tools
for CLOCKSystem specification, like exhaustive reachabil-
ity analysis.

This section starts by describing the kernel of our envi-
ronment, emphasising the possibility to extend the language
primitives introduced by CCSL with user-defined clock-
relations. Then a minimal core-syntax in presented, which
can be used interchange format between different environ-
ments, before briefly discussing the execution semantics and
some of the existing analysis tools.

5.1 Meta-described Clock Constraints
The CCSL language, was designed to represent time rela-
tions through the logical time formalism following a high-
level domain-agnostic approach. Hence, since it is concep-
tually simple, and free of technical-space artefacts, it is
an ideal candidate for introducing notions of time into a
general-purpose programming language.

The Need For New Primitives. Nevertheless, we have
found that relying only on the primitive operators provided
by CCSL was sometimes inefficient, cumbersome and ren-
dered the expression of state-based relations difficult.

To illustrate these difficulties, consider the SDF example
introduced in the Sec. 3.1. In this case, an equally valid SDF
execution semantics (as in Listing 4) can also be encoded us-
ing an automaton like the one presented in Fig. 3, in which
case the output, token, and input constraints (used in List-

Figure 3: Automaton encoding the SDF execution policy

Figure 4: CLOCKSystem model (abstract syntax)

ing 4) are encoded in a simple controller automaton govern-
ing the access to the FIFO channels connecting the actors.
The intuition behind this automaton is as follows: a) read-
ing and writing to the channel are exclusive – no reading
and writing at the same time; b) the process writing data
(represented by the w clock) simply writes outRate tokens
to the channel; c) the process reading data (represented by
the r clock) is enabled only if there are enough tokens in the
channel size >= inRate, otherwise it is blocked. In this case
a specification for the SDF application in Fig. 1 only needs
to create only 3 clocks and to instantiate 3 relations, one for
each edge in the SDF application, instead of 18 clocks and
18 relations needed in the case of the specification presented
in Listing 6. This renders the specification easier to under-
stand, and speeds up the model simulation and analysis since
it does not introduce intermediate clocks nor relations.

To address this expressivity problem, in CLOCKSystem
we have decided to implement the CCSL operational seman-
tics by specifying its mapping to a state-machine based en-
coding, such the one presented in [23], rather than directly
implementing it in a traditional interpreter (as is the case in
TimeSquare). This approach proved very useful since it en-
abled from the beginning the possibility of using automata-
theoretic analysis techniques, such as reachability analysis
and model-checking, directly on our model without recur-
ring to complex model-transformation approaches (such the
ones presented in [26]). Moreover, it helped reducing the
number of language concepts to a minimum (all primitives
operators are meta-described by automata), and opened the
conceptual framework for seamlessly integrating state-based
relations into the CLOCKSystem language.



Figure 5: The infinite automaton of the a � b relation

ClockSystem Metamodel. At its core, the CLOCKSystem
toolkit relies on the Smalltalk implementation of the meta-
model presented in Fig. 4. In this meta-model, the two cen-
tral concepts are the Clocks and the ClockRelations. The
Clocks are instantiated and linked to problem-space ob-
jects representing the different events of interests. Each
ClockRelations contains an automaton specification en-
coding its operational semantics. Conceptually, this automa-
ton is just a set of transitions between discrete states. Each
transition is just an association, between one source state
and one target state, labelled by a vector of Clocks that tick
when the transition is executed and an actionBlock that is
executed when the transition is fired. The purpose of this
action block is to update either the state-variables of the
automaton or the global variables in the system. Semanti-
cally, the execution of each transition is considered atomic.
Note that, in our setting, the CCSL expressions are nothing
more than simple ClockRelation instances with an ”inter-
nal clock” representing the clock produced by the expres-
sion. The ClockSystem class, in Fig. 4 simply composes
the set of Clocks and ClockRelations defined in a given
model.

A DSL for Primitive Relations. Traditionally, in automata-
based approaches for ensuring theoretical properties (such
as decidability, termination, etc.) the state-machine are con-
strained to be finite. However, this is not the case in CCSL,
which has some infinite clock relations, such as the prece-
dence. To cope with this difficulty, in CLOCKSystem, infi-
nite automata are encoded symbolically through a relation-
definition DSL (relDSL) using Smalltalk blocks2. In this
case, the Automaton of given relation does not explicitly
contain a set of transitions but a block that returning the out-
going transitions from a given state.

To better illustrate this aspect consider, for example, the
infinite automaton for the strict-precedence relation shown
in Fig. 53. In CLOCKSystem this relation is defined by the
Smalltalk block presented in Listing 8. The infinite num-
ber of states in the automaton is encoded through the state-

2 Note that relDSL can be seen as a meta-level DSL for specifying
ClockSystem primitive relations and should not be confused with the
ClockSystem DSL which only instantiate these relations
3 All CLOCKSystem automatons are synchronous, and complete in terms of
the clock vocabulary. To simplify the presentation we do not include in Fig.
5 the transitions that loop in a state while not enabling any clock nor the
negation of all clocks not enabled by the transition

variable s which is a Smalltalk integer. Once this encoding
is in place, the block responsibility is to return the possible
transitions from a given state. For example, if the state vari-
able is 0, executing the block such as strictPrecedence
value: 0 value: clock1 value: clock2 will return
a set with only one transition, namely {s->(s+1) when:
{a}} saying that the automaton can go to the state s+1 (0+1
in this case) and if it does the clock1 should tick and clock2
should not. Note that in this case another transition is pos-
sible, namely s->s when: {¬clock1.¬clock2} stating that
the system can stay in the same state s for an indefinite
period of time. However, if it does so, neither clock1 nor
clock2 can tick. The CLOCKSystem execution engine au-
tomatically adds the negation off all clocks not present in
a transition vector, and the transitions that block all clocks
while staying in the same state of the system to ensure the
correct semantics.

Note that, due to the unbounded representation of integers
in Smalltalk, (through SmallInteger, BigInteger instances)
limited only by the amount of available memory, we did not
need to use a symbolic integer encoding, which might be
more adapted in certain situation.

A side-product of this simple block-based representa-
tion is support for manipulating variables in the automa-
tons that comes at no cost. The variables are nothing more
than state-variables (such as s). Instead of interpreting them
as the source/target of transitions they are used for build-
ing predicates to guard the transitions, and are updated in
the actionBlocks using plain Smalltalk code. Constants are
also supported in the same manner. For constants, to ensure
that they are not updated in the action-blocks they are simply
not passed as arguments when these blocks are evaluated.
They can, however, be used in a read-only manner since
they will be free variables in the action block and capture
their value from the enclosing scope, the automaton block –
where they are block arguments which are not assignable in
Smalltalk.

Listing 8: The CLOCKSystem definition of the infinite a � b
relation

1 K e r n e l L i b r a r y>># s t r i c t P r e c e d e n c e
ˆ [ : s : a : b |
” unbounded s t r i c t p r e c e d e n c e ”
s = 0

i f T r u e : [ {
6 s -> ( s + 1) when: {a} } ]

i f F a l s e : [ {
s -> s when: {a . b } .
s -> ( s + 1) when: {a } .
s -> ( s - 1) when: {b} } ] ]

A Primitive for SDF. To illustrate the generality of our ap-
proach, consider once more the SDF example introduced
in Sec. 3.1 and the possible automata-based relation spec-
ification introduced in Fig. 3. To encode this relation in
CLOCKSystem, firstly we add a block argument s repre-
senting the mapping of the discrete automaton states to in-



tegers. Then, the variables manipulated by the automaton
are identified and added as arguments – size in our case,
followed by the constants used in the predicates – inRate,
outRate and capacity (when the capacity > 0 we consider
the the FIFO channel is bounded and can contain maximum
capacity token, obviously for a valid model the capacity ≥
outRate). Lastly, we add the clocks that are constrained
by the automaton – r and w in our case. Once the argu-
ments of the block identified, the transitions are encoded
in the block, see Listing 9 for this example. First of all,
there is a slight difference from Fig. 3, introduced by adding
the notion of channel capacity. The clock w and the as-
sociated transition is enabled only in the case where either
the capacity ≤ 0 – the channel is unbounded – or, if it is
bounded, there is enough place in the FIFO to store outRate

tokens (capacity − size >= outRate). Note also the pres-
ence of the actionBlocks used to update the variable size.
As stated before, these blocks are executed when the cor-
responding transition is fired with the state-variables as ar-
guments (in this case for example, the actionBlock is exe-
cuted through as message send like actionBlock value:
currentState value: currentSize, where s and size
are the values of the state variables at a given point during
execution).

Listing 9: User declared relation for a SDF channel
SDF >> # c h a n n e l

ˆ [ : s : s i z e : i n R a t e : o u t R a t e : c a p a c i t y :w : r |
| t r a n s i t i o n s |
t r a n s i t i o n s : = O r d e r e d C o l l e c t i o n new .

5 s i z e >= i n R a t e i f T r u e : [
t r a n s i t i o n s a d d : (

0->0 when: { r } d o :
[ : c o n f | | sz |

sz : = con f a t : 2 . / / s i z e v a r
10 con f a t : 2 p u t : ( s z - i n R a t e )

] ) ] .
( c a p a c i t y <= 0 o r :
[ c a p a c i t y - s i z e >= o u t R a t e ] ) i f T r u e : [

t r a n s i t i o n s a d d : (
15 (0->0) when: { w } d o :

[ : c o n f | | sz |
sz : = con f a t : 2 . / / s i z e v a r
con f a t : 2 p u t : ( s z + o u t R a t e )

] ) ] .
20 t r a n s i t i o n s a s A r r a y ]

All Relations are Not Created Equal. Using this encoding
scheme we have been able to model all CCSL operators,
except the concatenation operator. In automata-theoretic
approaches the CCSL concatenation relation is known as
the sequential composition of state-machines. Hence, even
though in CCSL it is presented on equal terms with respect
to the other clock relations, it is really a meta-operator that
enables to link several clock relations in a sequential man-
ner. In CLOCKSystemthe CCSL concatenation can be im-
plemented by the explicit identification and annotation of
the final states of the several finite relations. Then the con-
catenation relation instance is responsible only for passing

the control from these final states to the initial state of the
following automaton.

Some Practical Limitations. Though simple, and power-
ful, this technique has the disadvantage of rendering the
state-machines opaque, making it difficult to statically rea-
son about the primitive relations in CLOCKSystem. For ex-
ample, it is hard extract the set of transitions of a given finite
automaton. In the case of TimeSquare, and traditional CCSL
this is not an issue due to the fix number of primitive rela-
tions, which can be hard-coded in an analysis engine. How-
ever, in our case such ”hard-coding” is not possible due to
the possibility to add new user-defined primitives – defined
through our relDSL – like the SDF primitive in Listing 9. To
address this issue, in the future, we plan to use this encoding
only for the infinite automata (that motivated it) and provide
a simpler more explicit specification language for the finite
ones to facilitate their statical analysis.

The principal advantage of our automata representation is
that it offers a simple extension mechanism for adding prim-
itive relations. In practice this can be very important for effi-
ciency reasons and can ease the specification of some com-
plex interactions. Besides, some engineers are more familiar
to automaton-based specifications (which are more opera-
tional) than to their declarative counter-parts.

5.2 Concrete Syntax and Interchange Format
One of the core motivations behind CLOCKSystem is to pro-
vide an easy to use, read, and understand syntax for spec-
ifying executable time specification inspired by the CCSL
logical clock formalism. Hence, it is important to clarify its
syntax, and provide a standard mean for model interchange
between different environments supporting this formalism
(currently CLOCKSystem and TimeSquare). In this section,
we first introduce a simple generic syntax for expression
CLOCKSystem programs, that also serves as a basis for in-
teroperability. Then we show how using standard Smalltalk
messages we can define different problem-domain specific
syntactic synonyms that, as we have seen in Sec. 3, renders
the CLOCKSystem specifications very short and readable.

Listing 10: Core CLOCKSystem syntax in BNF.
system : : = systemDecl

c l o c k D e c l +
relOrExpDecl+
y o u r s e l f

5 systemDecl : : = ” ( ”
” ClockSys t em ” ” named: ” systemName ” ) ”

c l o c k D e c l : : = ( oneClock | manyClocks ) ” ; ”
oneClock : : =

( ” c l o c k : ” | ” i n t e r n a l C l o c k : ” ) clockName
10 manyClocks : : =

( ” c l o c k s : ” | ” i n t e r n a l C l o c k s : ” ) c l o c k L i s t
y o u r s e l f : : = ” y o u r s e l f ” ” . ”
relOrExpDecl : : = ” l i b r a r y : ” l ibraryName

( ” r e l a t i o n : ” | ” e x p r e s s i o n : ” ) operatorName
15 ” c l o c k s : ” c l o c k L i s t

[ ” c o n s t a n t s : ” c o n s t a n t L i s t ]
[ ” v a r i a b l e s : ” v a r L i s t ] ” ; ”



c l o c k L i s t : : = ” # ( ” clockName+ ” ) ”
20 c o n s t a n t L i s t : : = ” # ( ” va lue + ” ) ”

v a r L i s t : : = ” # ( ” va lue + ” ) ”

xName : : = ” # ” c h a r a c t e r + / / S m a l l t a l k symbol
va lue : : = O b j e c t / / any S m a l l t a l k o b j e c t

Listing 10 show the BNF specification of the concrete
syntax used in CLOCKSystem for the instantiation of the
Clocks and ClockRelations introduced in the last sec-
tion. The principal characteristic of this syntax is that it
is used indiscriminately to instantiate standard CCSL re-
lations (defined in a Kernel library) or to instantiate the
user-specific extensions. All these specifications starts by
creating a ClockSystem object sending the #named: mes-
sage to the ClockSystem class with a String or Symbol as
argument, then this object acts as a builder for instantiat-
ing Clock objects and ClockRelation objects. The build-
ing of the specification relies on Smalltalk message cas-
cading operator ”;”. The clocks are instantiated either one
by one, or in batch by sending the #clock: or #clocks:
message to the builder (the internalClock(s): mes-
sages are used for creating intermediate clocks needed
by the CCSL expressions). Once the clock declared, the
#library:relation:clocks:constants:variables:
or #library:expression:clocks:constants:variables:
message is used to instantiate a relation (expression) defined
in a given library. To simplify the specification for relation-
s/expressions, that do not need constants and/or variables,
for both these messages we define variants rendering the
specification of the constant and/or variable lists optional.

In Listing 11 we show the specification of the example
introduced in Fig. 1 using this syntax. While still quite read-
able, this syntax obfuscates somehow the model by: a) en-
coding the clocks, constants and variables as lists; b) inlin-
ing all constants and variables needed; c) making mandatory
the specification of the library and relation clauses.

Listing 11: Example of the core syntax encoding the SDF
example in Fig. 1 using the relation in Fig. 9

1 ( ClockSystem named: #SDF ex1 )
c l o c k s : # (A B C ) ;
l i b r a r y : #SDF r e l a t i o n : # c h a n n e l

c l o c k s : # (A B)
c o n s t a n t s : # (2 1 - 1)

6 v a r i a b l e s : # ( 0 ) ;
l i b r a r y : #SDf r e l a t i o n : # c h a n n e l

c l o c k s : # (B C)
c o n s t a n t s : # (1 2 - 1)
v a r i a b l e s : # ( 0 ) ;

11 l i b r a r y : #SDF r e l a t i o n : # c h a n n e l
c l o c k s : # (C B)
c o n s t a n t s : # (2 1 - 1)
v a r i a b l e s : # ( 2 ) ;

Keyword Synonyms. The syntax defined in Listing 10 is
simple and generic, however it fails to deliver a short and
readable syntax for CLOCKSystem specifications, see List-
ing 11, nevertheless it is the basis used in our system. To

achieve the results presented in Sec. 3 we rely on the defini-
tion of ”synonym” messages for instantiating the relations or
expressions needed. Listing 12 shows the definition of 4 such
synonyms for the strict precedence relation. The first one
uses the keyword notation used by TimeSquare, the second
one uses the standard abstract notation <, while the third in-
novates by defining the inverse of the < relation (its antonym
actually), which can also be interpreted as clock a follows
the clock b, which corresponds to our forth synonym mes-
sage.

Listing 12: Declaring syntactic synonyms for a � b relation
1 Clock>>#precedes: a n o t h e r C l o c k

s e l f sys tem
r e l a t i o n : # s t r i c t P r e c e d e n c e

4 c l o c k s : { s e l f . a n o t h e r C l o c k }

Clock >>#< a n o t h e r C l o c k
7 s e l f precedes: a n o t h e r C l o c k

Clock >>#> a n o t h e r C l o c k
a n o t h e r C l o c k precedes: s e l f

10 Clock >>#follows: a n o t h e r C l o c k
s e l f > a n o t h e r C l o c k

With these mechanisms in place we consider that the em-
bedding has rather succeeded. However, one detail has been
overlooked. When offering the support for user-defined syn-
tax one risk is that instead of facilitating communication,
the use of syntactic synonyms can hinder it. For example,
imagine a specification written with the keywords in an-
other language (it can be pretty difficult to understand). To
solve this problem, one solution would be to de-sugar the
CLOCKSystem specifications to a standard format, for ex-
ample the language used by TimeSquare. However, in the
case of user-defined ”primitive” relations this approach fails.
Nevertheless, in CLOCKSystem we do de-sugar the specifi-
cations to the rather verbose but generic language presented
in Listing 10. In the future, we consider building an ontology
of synonyms representing the relations between the mes-
sage symbols and the CLOCKSystem concepts represented
by them, and then de-sugar any specification to a user de-
fined unambiguous set of concepts from this ontology, de-
faulting to the ”core” syntax only for the missing names.

5.3 Execution Semantics and Verification
The execution of logical time specifications, such as ClockSys-
tem, produces series of event occurrences (ticks, instants)
that satisfy the constraints imposed by the specified clock
relations. These series of events can be seen as a partial or-
der of firings of the clocks involved in the specification. The
ticks can be interpreted as the logical activation of some
behavior, eg. a processor cycle, activating the computation
of the next instruction, or the occurrence of a particular
message-send. Thereof, the notion of time captured is de-
coupled from the physical time and represents essentially
notions of coincidence (an event arrives at the same time as
another one) and precedence (an event occurs before another



Figure 6: All possible behaviors of a specification with 3
independent clocks

one) which correspond to the logical view of time introduced
by L. Lamport in [14].

Clock Behavior. A single non-constrained clock can be
seen as a cyclic infinite behavior that either ticks or does
not tick at any given execution step, in other words the clock
is free to tick at will. If now we consider the behavior of two
or more unrelated clocks together, the expected behavior is
that each clock can decide to tick or not to tick on its own
(non-deterministically) at any execution step, hence creat-
ing an execution sequence containing three possible instant
configurations: 1) only one clock ticks alone; 2) all clocks
tick at the same time, in which case we say that their ticks
coincide; 3) some clocks tick together while others don’t.
The set of possible behaviors for a system with 3 indepen-
dent clocks is presented in Fig. 6 as a a Labelled Transition
System (LTS), where the labels are synchronisation vectors,
as introduced in [2], representing coincident instants of the
3 clocks. This LTS represents all possible execution steps
involving the simultaneous tickings of 1, 2, and 3 clocks.
Note that this figure is also a complete automaton for which
we have represented only the steps with clocks ticking, and
that there are implicit transitions that do imply that no clock
ticks.

The Impact of Constraints. Adding constraints to such a
system reduces the number of possible behaviors to the ones
globally allowed by the synchronous parallel composition
of the clock behaviors with the constraint behaviors. Fig. 7
shows the emerging behavior of a previously considered 3
clock system, where two clocks are constrained to alternate,
and we can see that, for example, the three clocks are not
allowed to tick at the same time anymore (the transition
labelled {b. c. a} in Fig. 6 is not present in Fig. 7).

It is interesting to see that, even though the last two
illustrations represent the set of emergent behaviors of a
CLOCKSystem specification, graphically they are similar
with the primitive constraint automata, shown in Fig. 3 and
Fig. 5. This similarity is not incidental, and emerges natu-
rally from the formalism used to represent the CLOCKSystem
relations. Mainly, the overall composition of the individ-
ual constraints produces an automaton that it is itself a
CLOCKSystem constraint. Thus, it can be seen as a com-
plex primitive relation, which can be instantiated as such.

Figure 7: All possible behaviors of a specification with 3
clocks (a, b, c) where the ticks of a alternate with the ones of
b.

Arnold-Nivat Processes and Verification. The formalism
used by CLOCKSystem, introduced and formally defined in
[2], and known in the literature as the Arnold-Nivat pro-
cesses, explicitly expresses the interactions between pro-
cesses (eg. synchronisation) through a high-level abstrac-
tion mechanism, named synchronisation vectors. This mech-
anism either forces or forbids the simultaneous (coincidence
in CCSL parlance) occurrence of a set of events (clocks ticks
in our case), which is explicitly defined as tuples labelling
the transition relations in a given process (automaton) – ex.
{ b. c. a. } in Fig. 6 is such a tuple. This technique to-
gether with a synchronous product operator (also known as
synchronous composition of processes) offers a very general
and elegant formalism well adapted for our purposes. More-
over, the process of constructing the synchronous product
unravels all the reachable states of the system that enables
the verification of temporal logic properties (safety and live-
ness) on the resulting LTS, through a technique known as
model-checking [3].

However, in the case of CCSL, due to the presence of
infinite clock relations, the construction of the synchronous
product cannot be achieved if the combination of constraints
does not bound the infinite behaviors. While theoretically
problematic – the termination of the composition operation
cannot be guaranteed –, in practice the occurrence of infinite
behaviors is considered more likely to be a bug than a fea-
ture. Hence it is important to statically decide if all infinite
relations are bounded, which is turn is a very challenging
problem, partially addressed in [22].

Moreover, in some cases, even if the parallel composition
pseudo-algorithm can theoretically terminate (finite state-
space), in practice we can encounter a state-space explo-
sion problem due to the exponential growth in the number of
emerging behaviors of the system with respect to the num-
ber of interacting processes (relations in our case), a hard
problem that challenges the scalability of computing the ex-
haustive set of reachable states. Nevertheless, for some types
of systems (ex. protocols, control-intensive application, etc.)
the possibility to formally verify safety and liveness prop-
erties through model-checking relieves the system designer
for the burden of testing, and delivers strong guarantees to



Figure 8: Exhaustive reachability analysis result for the SDF
example with channel capacity bounded at 4 tokens.

the system users. To address these cases the CLOCKSystem
toolkit supports the parallel composition of clock relations
through a pseudo-algorithms, similar to the one introduced
in [22]. This pseudo-algorithm is implemented in Smalltalk
using the BuDDy BDD4 package [16] for clock assignment
resolution.

Fig. 8 shows the exhaustive state-space exploration re-
sults, obtained with CLOCKSystem, for the SDF example
introduced in Fig. 1. In this case the channel capacity of
each channel was bounded at 4 tokens to ensure a finite
state-space5. This result represents all the execution paths
(sequences of clock tickings) allowed by the specification,
and amongst them we can identify the cyclic trace presented
in Fig. 2a (emphasised with bold lines).

Traces and Simulation. To alleviate all these complica-
tions another well known technique can be used to prove
the presence of property violations, instead of their absence.
This technique, commonly known as simulation, extracts
particular executions traces from the set of possible behav-
iors by walking through the LTS automaton of the compo-
sition either explicitly or implicitly. In a practical setting
extracting a trace explicitly does not solve the previous is-
sues since the LTS should be constructed first, however can
prove very useful for understanding and debugging parallel
composition results. One particular execution trace can also
be extracted dynamically (implicitly) during the process of
parallel composition by simply choosing one and only one
transition to execute from the set of alternatives possible at
any given execution point. The decision procedure used to
select the transition to fire can rely on any heuristic decision
process, in the context of CCSL a number of such heuris-
tics were proposed in [1] and are currently implemented in
TimeSquare and CLOCKSystem.

In terms of simulation facilities, as opposed to TimeSquare
which implements a simulator by the direct interpretation of
the CCSL operational semantics (providing only trace ex-
tractions implicitly), the CLOCKSystem simulator relies on
the parallel composition of automata and offers the possi-
bility to use either the explicit or the implicit trace extrac-
tion techniques. In CLOCKSystem , the extracted execution

4 BDD – Binary Decision Diagram
5 Note that the capacity bound – 4 – was chosen arbitrarily and any bound> 2 would have produced similar results but with a smaller state-space for
2 and 3 and larger state-space for any value > 4.

traces are in fact just a subgraph of the resulting LTS graph.
Which can be either interpreted for a finite number of steps
or fed as input of other analysis tools. One example of such
a trace is presented in Fig. 2a, with its interpretation for 21
observable simulation steps in Fig. 2c. Note that our inter-
preter ignores the eventual invisible steps (the ones without
ticking clocks). Also note that through our encoding these
traces could be also interpreted as execution contexts, for in-
tegration with other verification approaches such as Context-
aware Verification [8].

5.4 Practical considerations
CLOCKSystem was implemented in Pharo Smalltalk version
3. For the implementation of the synchronous parallel com-
position of automata we rely on the use of BuDDy BDD li-
brary [16] linked and used from the Smalltalk image through
the high-performance NativeBoost FFI interface [5]. We im-
plemented a simple tri-state logic solver in Smalltalk which
can be used for the platforms where the BDD library is not
available. A simple editor for ClockSystem specifications
was developed using the Glamour toolkit, and the Roassal
framework was used visualisations [4].

6. Conclusion and Perspectives
In the context where our execution platforms are becoming
complex distributed systems on a chip, by integrating more
and more heterogenous computing resources (processor
cores, graphical accelerators, etc) the need for time-driven
reasoning becomes a necessity for software systems in gen-
eral. CLOCKSystem addresses the lack of support for reason-
ing about time and its implications in general-purpose pro-
gramming languages. While, currently the CLOCKSystem
and the associated tools are in their infancy, we believe that
our logical time embedding in Smalltalk already promises a
symbiotic relation with its host environment.

In this study we have presented CLOCKSystem, an em-
bedding of a logical representation of time into the Pharo
Smalltalk environment. This environment re-uses concepts
from the CCSL formalism, which was adopted for the for-
malisation of time specifications in the UML Marte environ-
ment, and extends this formalism by adding the possibility to
define new primitive ”clock relations” through an automata-
based approach. Moreover, the CLOCKSystem language bor-
rows the syntax of CCSL, for which it builds an DSL embed-
ded in Smalltalk through the usage of message-sends and re-
lations synonyms. By presenting a case-study encoding the
control aspects of Synchronous Data-Flow applications, this
DSL was compared to the abstract and TimeSquare speci-
fications and was shown to be readable and very close to
the abstract notation of CCSL. The importance of the con-
tribution was emphasised through five usage scenarios that
are enabled by the CLOCKSystem toolkit. And finally some
of the implementations details were discussed, a generic in-
terchange format was proposed, and some principles of the



CLOCKSystem execution semantics were briefly presented
emphasising some of the difficulties of the formalism.

Future research directions include: a) improving the
support for statically detecting if the constraint system
is bounded (finite state-space); b) extending the expres-
sive power of CLOCKSystem by integrating support for
dense-time representations, inspired by timed-automata for-
malisms; c) integration mechanisms for reasoning about
dynamic environments, where the ”clock” are dynamically
created during the lifetime of the application; d) studying
the potential incidence of CLOCKSystem constraints and
execution traces can have for state-space decomposition in
model-checking.
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constraint specification language for building timed causality
models. Innovations in Systems and Software Engineering,
6(1-2):99–106, 2010. ISSN 1614-5046. . URL http:

//dx.doi.org/10.1007/s11334-009-0109-0.
[19] N. Menad and P. Dhaussy. A transformation approach for

multiform time requirements. In R. Hierons, M. Merayo,
and M. Bravetti, editors, Software Engineering and Formal
Methods, volume 8137 of Lecture Notes in Computer Science,
pages 16–30. Springer Berlin Heidelberg, 2013. ISBN 978-
3-642-40560-0. . URL http://dx.doi.org/10.1007/

978-3-642-40561-7_2.
[20] OMG. Uml profile for marte: Modeling and analysis of real-

time embedded systems, 2009.
[21] D. Pilaud and N. Halbwachs. From a synchronous declarative

language to a temporal logic dealing with multiform time. In
M. Joseph, editor, Formal Techniques in Real-Time and Fault-
Tolerant Systems, volume 331 of Lecture Notes in Computer



Science, pages 99–110. Springer Berlin Heidelberg, 1988.
ISBN 978-3-540-50302-6. . URL http://dx.doi.org/10.

1007/3-540-50302-1_5.

[22] Y. Romenska and F. Mallet. Improving the efficiency of
synchronized product with infinite transition systems. In
V. Ermolayev, H. Mayr, M. Nikitchenko, A. Spivakovsky,
and G. Zholtkevych, editors, Information and Communica-
tion Technologies in Education, Research, and Industrial Ap-
plications, volume 412 of Communications in Computer and
Information Science, pages 285–307. Springer International
Publishing, 2013. ISBN 978-3-319-03997-8. . URL http:

//dx.doi.org/10.1007/978-3-319-03998-5_15.

[23] Y. Romenska and F. Mallet. Lazy parallel synchronous com-
position of in finite transition systems. In International Con-
ference on ICT in Education, Research and Industrial Ap-
plications, volume 1000, pages 130–145, Kherson, Ukraine,

June 2013. CEUR-WS.org.
[24] F. Schreiber. Is time a real time? an overview of time on-

tology in informatics. In W. Halang and A. Stoyenko, edi-
tors, Real Time Computing, volume 127 of NATO ASI Series,
pages 283–307. Springer Berlin Heidelberg, 1994. ISBN 978-
3-642-88051-3. . URL http://dx.doi.org/10.1007/

978-3-642-88049-0_14.
[25] R. Schwarz and F. Mattern. Detecting causal relationships

in distributed computations: In search of the holy grail. Dis-
tributed Computing, 7(3):149–174, 1994. ISSN 0178-2770. .
URL http://dx.doi.org/10.1007/BF02277859.

[26] L. Yin, F. Mallet, and J. Liu. Verification of marte/ccsl time
requirements in promela/spin. In Engineering of Complex
Computer Systems (ICECCS), 2011 16th IEEE International
Conference on, pages 65–74, April 2011. .



72 CONTENTS



1

From Smalltalk to Silicon:
Towards a methodology to turn Smalltalk code into FPGA

LE Xuan Sang

1,2
, Loïc Lagadec

1
, Luc Fabresse

2
, Jannik Laval

2
and Noury Bouraqadi

2

1Lab-STICC, ENSTA Bretagne
2Institut Mines-Telecom, Mines Douai

Due to their ability to combine high performances along with
flexibility, FPGAs (Field Programmable Gate Array) are used
in robotic applications nowadays, especially in case of real-
time applications. The FPGA circuits are often designed and
configured using the Hardware Description Languages (HDLs)
like VHDL or Verilog. However, although these languages pro-
vide abstractions up to the functionality level, they lack many
features of todays modern languages that make them unsuited
for high-level models and systems. In this paper, we present
an overview of a methodology that uses a Dynamic Reflective
Language, such as Smalltalk, for high level hardware/software
co-design on FPGAs.

Index Terms—Smalltalk, Pharo, FPGA, VHDL, Native
Boost, robotic, Dynamic Reflective Language.

I. INTRODUCTION
A fundamental robotic application often consists of three

general states: (1) perception in which the robot senses and
analyses the environment via its sensors. (2) Planification
that helps the robot to take decision based on its sensation.
(3) The Control state is the reaction of the robot where
its planification takes e�ect on the actuators to answer the
changes of environment. A typically example is given by a
robot with a vision system consisting of a fixed camera, which
takes pictures of a scene, recognises an object, identifies
its location, calculates the trajectory and commands the
actuators to follow the object. The more sensors the robot
has, the better its ability to interact with the environment and
to guarantee a stable behaviour as well as predictable perfor-
mance. However, this will cause two major problems: first,
multi-sensor processing and analysing demand a signifiant
processing power, especially in case of real-time applications
which have a heavy response time constraint. Second, adding
more sensors may change the hardware configuration of the
system and thus can require the replacement of other devices
consequently which will raise the production cost.

On the software side, to improve the productivity, we use
Smalltalk [1], [2], a high level dynamic language, in the
development task. With its simplicity and rich semantic,
the language makes the programmation task significantly
faster and simpler. However, Smalltalk is not very suitable for
mass datas processing (multi-sensor datas), especially in the
context of a real-time application which requires the parallel
processing of multi-data sources.

These hardware/software challenges of flexibility and per-
formance can be overcome by using FPGAs. FPGAs are

integrated circuits which contain a matrix of reconfigurable
gate array (logic block) that, when configured, implement
a circuit [3], [4]. FPGA circuits use hardware for processing
logic and thus may not depend on any operating system.
Because the processing paths are parallel, di�erent operations
do not have to compete for the same processing resources.
That is, the operational speed can be very fast [5]. The
reconfigurability of FPGAs is another interesting point of this
kind of hardware which turns it to a limitless flexible device.
This ability provides designers with a way to make di�erent
hardware configurations on the same chip. This means that,
each program that uses a FPGA chip can download a new
circuit design onto the chip and tailor it specifically for
the needs of that program. With these abilities, FPGA is a
powerful and relatively inexpensive solution which responds
to the demand of high processing power and flexibility to
the unforeseen change of hardware configuration in the robot
application.

To avoid confusion, in this paper, we make a convention
that the term design is used only for the digital hardware
design task (section II) that implements the FPGA circuits.
For the robotic software development on FPGA (section III),
we use the term program/programing instead.

The FPGAs circuits are often designed using a Hardware
Description Language like VHDL or Verilog [6], [4]. The
HDLs have been evolved in recent years. They provide a
simpler approach to digital hardware design. But in compar-
ison with today modern software technique, this evolution is
quietly not enough. These HDLs allow the specification at
the Register Transfer Level (RTL). But at algorithmic level,
their lack of semantics makes behavioural verification and
debugging hard. Moreover, since these languages are specific
for hardware description, they are not adequate for high-level
models or systems which require a hardware/software co-
design. An HDL-based design is often constrained on some
target FPGAs that limits its reusability on the others. This
slows down the production of new designs and makes di�cult
to maintain or extend existing designs. A high-level language
like Smalltalk provides all the features that the HDLs miss.
Furthermore, it o�res also a valuable ability of debugging,
testing and probing application which is very useful for the be-
havioural verification of the hardware design. A FPGA HDL-
based design has many similarities with software development
and therefore can be modelled by using a high-level language.
There are some works which are targeting on this, such as
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[7], [8], [9], [10], using C++, Java or Python. The well-
known SystemC [11], [12], [13] is a typically example, by
extending the mainstream C++, it provides a class library
that enables to describe and simulate software/hardware at
system level. This brings the advantages of oriented-object
software development to the digital hardware design world.

This paper will attach on two sides of the hard-
ware/software co-design problem on FPGA. We first present
an overview of a hardware design methodology that uses
Smalltalk as a hardware description and verification language.
Here we propose a modelling methodology that acts as an
abstraction layer between Smalltalk and VHDL, this layer
produces the VHDL code from Smalltalk code and invokes
the vendor’s synthesis toolchain to actually make the code
available on the FPGA (section II). Secondly, we aim at
a software development approach that allow us, by using
Smalltalk, to program the robotic software that need interact
with the FPGA. This section presents also the FPGA-ARM
System on Module (SoM) or System on Chip (SoC [14])
which gives us the ability to interact directly to the FPGA’s
registers via system libraries (section III). At the end of the
paper (section IV), we discuss what we have done so far and
the future works based on the methodologies proposed.

II. A GENERAL MODELLING METHODOLOGY TO
DESIGN FPGA CIRCUITS USING SMALLTALK

This section presents the FPGA hardware design side, in
which we use Smalltalk as a high level hardware description
an verification language.

A. Background : FPGA concepts and development
life-cycle

The FPGA circuits, in general term, are often designed
using a HDL language (such as VHDL or Verilog) and
configured by the vendor’s toolchain. Figure 1 shows the
development flow of a FPGA HDL-based design [4]. The left
portion represents the design and refinement process in which
the design is transformed from an abstract HDL description
to a device cell-logic configuration before being downloaded
onto the chip. The right portion is the design verification pro-
cess to check that the design is correct (RTL Simulation) and
meets the functionality requirements (functional simulation)
as well as the performance constraints (timing simulation).

The synthesis is known as the logic synthesis, in which
the HDLs is transformed from the RTL constructs to generic
gate level components. The implementation process consists
of three smaller sub-processes : The translate process merges
the designs to a single netlist. The map process maps the
generic gates in the netlist to FPGA’s logic cells. Finally the
place and route process defines the physical layout inside the
FPGA and connects the logic blocks together. These two
processes strictly depend on the vendor’s tool (Xilinx, Altera
etc.).

B. Smalltalk as a hardware description an verification
language

As mentioned before, the lower steps (marked as 3 and 4
in figure 1) are strongly coupled to the vendor’s tools and

3

4

21
Design Entry

Design synthesis

Testbench

RTL Simulation

Functional 
simulation

Timing simulationStatic timing 
analysis

FPGA 
chip

Implementation

Device programming

Figure 1: A HDL-based development flow: (1) Design the
system and derive the HDL files. (2) Write the testbench and
perform a RTL simulation to verify the design. (3) Synthesis
and implement the design using the vendor’s toolchain. (4)
Download the binary file (proprietary format) onto FPGA
memory. The functional simulation and the timing simulation
are optional and thus can be omitted from the development
flow.

therefore are di�cult to change. Our proposition is to model
only the top level of the flow, concretely, the HDL design
task and the RTL Simulation task (marked as 1 and 2).
The main objective is to be able to use Smalltalk as a high-
level hardware description and verification language; as well
as to benefit from its integrated development environment to
debug and manage the hardware designs.

The overall architecture of our methodology is shown in
figure 2. First we need to build an Hardware design abstrac-
tion layer that acts as a abstraction layer between Smalltalk
and VHDL. This layer models the basic principles of the
VHDL, and thus can turn Smalltalk to a high-level hardware
description language. It will handle all of ours Smalltalk-based
design entries on the top.

From this abstraction layer, two lower modules will be
developed : (1) one provides the Smalltalk-VHDL conversion
ability which can help to generate an HDL-based design entry
from the Smalltalk’s one. This module will create a path to
the traditional design flow that brings our design to the real
hardware via the vendor’s toolchain. (2) The other handles
the RTL Simulation task where we can verify the correct-
ness of our design right inside the Smalltalk environment.
Note that, for the lower simulation levels such as functional
simulation and timing simulation, we need the vendor’s tools
consequently.

Since our purpose is to propose a simple and more e�cient
way to design the FPGA circuits, the methodology described
above must meet some requirements below:

Correctness of conversion: The Smalltalk-to-VHDL
conversion must ensure the preservability of the algorithm.
Moreover, since the synthesis and implementation are done
automatically behind the scene, the produced VHDL must be
a already-synthesizable VHDL without any further modifica-
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Smalltalk-based design entry

Hardware design abstraction layer

Smalltalk to VHDL RTL Simulation

HDL-based design entry

FPGAVendor’s tools chain

Figure 2: A Smalltalk-based development flow: the modelling
is done on top, at the language and simulation level and then
provides a path to the vendor’s tools to make the design
available on the real FPGA.

tion on it.
Reusability and Extensibility: The abstraction layer

must handle the compatibility of the Smalltalk-based de-
sign with di�erent FPGA devices and make it hardware-
independent. This allows the reusability of the design without
(or with a minimal) e�ort of modification. The design will also
need to be extensible by subclassing, the more it is subclassed,
the more its functionalities are enriched.

Simulation: As we only work at RTL level, the simu-
lation must allow the designer to verify the correctness of
the design at that level. It’s ideal that the simulator can
support the waveform by tracing the signal changes in a VCD
(Value Change Dump) file. This kind of file can be viewed
using an external viewer like GTKWave1, or much better, one
developed natively in Smalltalk [15], [16]. The possibility of
using Unit test (SUnit) in the hardware design is also very
appreciated.

Robust interaction with vendor’s tools: There are
di�erent FPGA vendors out there (Xilinx, Altera, etc.), and
every vendor has many FPGA families di�erent (Xilinx: Vir-
tex, Spartan, Artix, etc.). Therefore, in order to configure the
design on any FPGA chip, we need to provide its hardware
description to the vendor’s toolchain. The methodology must
propose an e�cient way to facilitate and automate this
process [17], [18].

III. SOFTWARE PROGRAMMING ON FPGAs WITH
SMALLTALK

This section describes the approaches to communicate
with the FPGA circuits from our Smalltalk-based robotic
application.

A. Standalone FPGA
A standalone FPGA is a FPGA which can independently

operate side by side with the host system. This FPGA has pre-
configured circuits on it in order to perform a fixed algorithm

1http://gtkwave.sourceforge.net

(image filter for example). Figure 3 shows a typically com-
munication flow between the Smalltalk-based software and
the FPGA’s circuits via a common hardware interface like
USB,RS232,etc. Here we use a Foreign Function Interface
(FFI) such as NativeBoost[19], [20] to get access to the C
librairies which define the interaction protocol with the FPGA
circuits.

Although this approach is simple and easy to implement,
it presents a potential risk of bottleneck when using these
communication interfaces. In fact, the processing time on
FPGA is fast, but the data transfer between the host system
and the FPGA may be costly and therefore, can drop down
the performance of the overall system.

Host System

Pharo

Smalltalk application

FPGA

C Interface librairies 

FFI/ Language Binding

Interface 
(USB, 

UART, etc.)

Figure 3: A Smalltalk-based communication flow on a stan-
dalone FPGA: the application on the host system interacts
with the FPGA’s circuits via an interface of communication
such as USB,RS232, parallel, etc.

B. Optimisation of software/hardware interaction with
FPGA-ARM SoM/SoC

A FPGA-ARM System on Module (SoM) or System on
Chip (SoC) is an integrated circuit that integrates an ARM-
based hard processor system (consisting of processor, periph-
erals and memory interfaces) with a FPGA chip into a single
module/chip. This integration brings Linux on top of the
system as the software layer and makes the communication
between FPGA and ARM more e�cient while simplifying
the development. Software application can talk to FPGA via
its Extension Processing Platform Architecture [21] (usually
provided by vendor) which allows us to interact directly with
the FPGA registers. This will reduce the bottleneck problem.

For this kind of FPGA-systems, we introduce a way to
communicate with the FPGA by accessing to its registers.
As shown in the figure 4, we host the Pharo Smalltalk
on top of the embedded system (there is already a vir-
tual machine for the ARM2 architecture), and then build a
Smalltalk abstraction layer to make our Smalltalk code talks
to the FPGA registers via system librairies. At this point, the
Register interaction abstraction layer provides a path to the

2https://ci.inria.fr/pharo-contribution/view/ARM/
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system librairies (Drivers/ Extension Processing Plateforme
architecture) and brings their functionalities to the Smalltalk
environment which opens a way to interact directly with
FPGA registers from our Smalltalk application.

Linux Embedded System

Pharo

Smalltalk application

Register interaction abstraction layer

FPGA

Drivers / Extension Processing Platform 
Architecture

FFI/ Language Binding

ARM

Figure 4: A Smalltalk-based communication flow on a FPGA-
ARM OMS/SoC : we use FFI (Native Boost for example) to
access to system libraries in order to interact with FPGA
circuits registers.

Note that, to program the system by this way, a pre-
configured circuit is required to be available on the FPGA
chip which provides the registers that our software want to
interact with.

IV. EXPERIMENTAL VALIDATION
To make a proof of the challenges presented in section I,

we first build a reference real-time robotic application fully
in Pharo Smalltalk using an actual robot. By analysing this
one, we would like to define the critical parts that have a
negative impact on its performance. These parts will then
be projected (designed) on FPGA to obtain a significant
optimisation. Obviously, the transformed application will be
evaluated quantitatively, and the expected result is that we’ll
win an important gain in term of performance when using
FPGA.

For the reference robotic application [22], we chose to
develop a simple object tracking system (by color pattern)
with a wheeled robot [23] available at Institut Mines-Telecom
(as shown in figure 5): the robot uses its camera to scan the
whole environment and sends back an image stream. The
application filters each received image by a color pattern using
a HSV filter and looks for the target object (for example, a
tennis ball). If the object is found, the laser sensor data will be
collected from the robot to mesure the distance to the object.
Based on these parameters, the application will command the
robot to move (forward, backward, rotate, etc) such way that
the robot maintains always a safe (constant) distance with

the object. The application has been entirely developed in
Smalltalk with the help of PhaROS 3, a Pharo package that
allows us to interact with the robot via the ROS 4 middleware
[24], [25].

Figure 5: The Robulab.

When testing with the camera resolution of 320x240 (32
bit image, lowest resolution), we found that the application
took around 230 ms to completely process each image,
meaning 4 images per second. This speed is obviously far
away from a real time application which demand at least 15-
20 images per second. This is the critical part that need to
be accelerated through using FPGA.

We are currently working on the projection of the image
processing part on FPGA to obtain a hardware version of the
algorithm. A first performance comparison between software
and hardware implementation of the HSV filter [26], [27]
has been performed. The algorithm gets a RGB image as
input, transforms it to HSV color space and then filters it
by a specific color pattern. We’ve implemented 3 versions of
this algorithm using Pharo Smalltalk, C (with OpenCV) and
FPGA circuits.

(a) (b)

(c) (d)

Figure 6: HSV filtre : (a) Original image; images filtered using
Pharo (b), openCV (c) and FPGA circuits (d)

Figure 6 shows the experimental results of these ones on
an 192x128 image, 32 bit with the color pattern: 75 Æ H Æ

3http://car.mines-douai.fr/2014/02/pharos-fosdem-2014-slides/
4Robot Operating System
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150, 0.3 Æ S Æ 1.0, 0.5 Æ V Æ 1.0 (the tennis ball color
range). Although there are a slightly di�erence between the
filtered images, the object, in general term, is well identified
in all case. On the processing performance side, we found that
to completely filter the image, the Smalltalk, C, and FPGA
implementation took around 73, 1.5 and 2.5 milliseconds
respectively. That is, when passing from Smalltalk code to
FPGA circuits, we obtain a very important gain (about 97%)
in term of performance. However, the C implementation (with
openCV) is shown faster than the FPGA one (around 1
millisecond) which seems surprising theoretically. In fact, in
this experiment, we use a standalone FPGA and the image
is transferred between the host system and the FPGA via an
USB connection [28] for filtering. Here we encounter the bot-
tleneck problem which drops down the circuits performance.
With a FPGA-ARM SoC/SoM, this problem can be optimised
and the FPGA implementation can perform more e�ciently.

V. CONCLUSION
This paper presents the state of the art of an approach

to use Smalltalk for software/hardware co-design on FP-
GAs. In this work, we focus mainly on a general modelling
methodology of hardware design at the behavioural (high
abstraction) level that can make the hardware design task
simpler and more e�cient. We also propose a theoretical
Smalltalk-based solution to communicate with the FPGA
circuits (Standalone or SoC/SoM FPGA). We finally show
a experimental comparison of performance between software
and hardware implementation of a HSV filter algorithm which
help us figure out some theoretical hypothesises.
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Abstract
Development of software that determines the behavior of
robots is typically done in a language that is far from dy-
namic. Programs are written, compiled, and then deployed
on a simulator, or the robot, for testing. This long devel-
opment cycle causes a cognitive dissociation between writ-
ing the code for the robot and observing the robot in ac-
tion. As a result, writing robot behaviors is much more dif-
ficult than it should be. In contrast, live programming pro-
poses an extraordinary tightening of the development cy-
cle, yielding an immediate connection between the program
and the resulting behavior. To achieve live programming for
robot behaviors, we designed and implemented the LRP lan-
guage. In this paper we show how LRP interfaces with the
Lego Mindstorms EV3, report on experiences programming
Lego robots, and discuss how salient features of the language
were made possible thanks to its implementation in Pharo
Smalltalk.

1. Introduction
The origins of live programming can be traced back to the
early work of Tanimoto on Viva [12]. It states that “A live
system begins the active feedback at editing time, and then
continues it through the remainder of the session or until ex-
plicitly disabled by the user.” Such live programming allows
programmers to benefit from an immediate connection with
the program that they are making. This is because the de-
velopment cycle is extremely tight and there is no cognitive

[Copyright notice will appear here once ’preprint’ option is removed.]

dissociation between writing the code and observing its ex-
ecution.

In our research we aim to bring the advantages of live
programming to programming of robots, more specifically
the behavior layer. The behavior layer is the part of the soft-
ware of the robot that acts on processed inputs to realize spe-
cific actions of the robot, i.e. its behavior. Typically, such
behavior is written in a language that is far from dynamic,
compiled, and then deployed on a simulator (or the robot it-
self) for testing. In this long cycle the cognitive distance be-
tween the program and the resulting robot behavior is vast,
resulting in a high degree of difficulty of getting these be-
haviors to work well. For example, it is frequently the case
that the programmer observes the robot (or the simulation)
performing some specific movement and it is totally unclear
why this movement is happening. With live robot program-
ming this cognitive distance almost disappears. This is be-
cause the development environment includes a visualization
of program execution that transparently updates on each pro-
gram change, in addition to the execution being reflected in
the robot simulator or even on the running robot itself.

To allow live programming of robot behaviors we have
developed the Live Robot Programming (LRP) language.
This language is based on the nested state machine paradigm,
as this paradigm has proven to be well-suited to define robot
behaviors [8, 14]. LRP is designed from the onset to be
a live programming language, and as such comes with its
own state machine interpreter and visualization of existing
machines. The language is not hardcoded to a specific robot
platform, instead relying on bridging software to access spe-
cific robot APIs.

In this paper we show how LRP enables live program-
ming of the Lego Mindstorms EV3 robot platform through
JetStorm [7], report on our experiences programming the
Mindstorms in LRP, and discuss specific points of the im-
plementation of LRP that were facilitated largely by the lan-
guage features and infrastructure present in Pharo Smalltalk.

This paper is structured as follows: the next section gives
a brief overview of the LRP language, using an example
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behavior that also serves to illustrate elements of the rest of
the paper. Section 3 reports on the bridge to the Mindstorms
and our experience in using it to program robot behaviors.
Following this, Section 4 highlights specific elements of
Pharo Smalltalk that made the implementation possible. The
paper then presents related work, future work and concludes.

2. The LRP Language
Live Robot Programming (LRP) is a live programming,
nested state machine based language with an associated in-
terpreter and visualization, implemented in Pharo. The fea-
tures of LRP are designed for robot programming, yet the
language is not hardcoded to a specific robot platform. LRP
enables the use of APIs of specific robot platforms and as
such comes with bridges towards the Robot Operating Sys-
tem (ROS) [5], and now also to the Mindstorms EV3 [13]
through JetStorm [7], as will be discussed in Section 3.

A complete description of LRP is outside of the scope of
this paper, we only give a brief overview of its features here,
and refer to its website http://pleiad.cl/LRP and other
published work [4] for more details.

The main language features of LRP are:

• Machines with states and different kinds of transitions.
• Transitions that can occur on events, occur after a timeout

or occur automatically after a state is entered.
• Events are explicitly defined and trigger if their included

piece of code, called an action, evaluates to true.
• States can have actions that are run when entering the

state, leaving the state, or when the state is active.
• States can define state machines, which enables nesting.
• Machines can define variables, and these are accesible

inside actions if the variable is lexically in scope.

LRP has its own language syntax and the interpreter is,
in essence, a plain state machine interpreter that consumes
the ASTs of the program and provides the standard nested
state machine semantics. The only remarkable element is
that actions are actually Smalltalk blocks that are compiled
after the program is parsed. This process is discussed in
Section 4.1.

To show the syntax of the language, clarify how it allows
for robot programming on the Mindstorms and provide ex-
ample material for Sections 3 and 4, we now show and dis-
cuss the code for a simple behavior. The behavior is a simple
space exploring behavior where the robot goes forward until
it encounters a wall, where it backs up, turns a bit, and again
goes forward. This behavior is ment to run on a differential-
drive robot1 with the (ultrasonic) distance sensor pointing
forward and a touch sensor on both front corners. An ex-

1 Typically a tricycle that has 2 driven wheels, each with its own motor, and
the third wheel being a caster

WiFi
Dongle

Touch
Sensors

Ultrasonic
Sensor

The
“Brick”

Right driven 
wheel

Caster
(hidden)

Left driven 
wheel

Figure 1. The Lego Mindstorms robot of the explorer be-
havior example.

ample of such a robot constructed using the Mindstorms is
shown in Figure 1.

The first part of the code, below, takes care of connecting
the program to the Mindstorms by reifying the different
motors and sensors as variables:

1 ( var motA := [ LRPEV3Bridge motorA ] )
2 ( var motB := [ LRPEV3Bridge motorD ] )
3 ( var u l t r a := [ LRPEV3Bridge s e n s o r 3 ] )
4 ( var r i g h t t o u c h := [ LRPEV3Bridge s e n s o r 1 ] )
5 ( var l e f t t o u c h := [ LRPEV3Bridge s e n s o r 4 ] )

Five variables are declared and immediately initialized,
which is mandatory. In LRP, code between square brackets
are actions, i.e. Smalltalk blocks. The class LRPEV3Bridge
is a facade class responsible for connection to the Mind-
storms and making the different sensors and motors avail-
able. This is in essence how LRP code interacts with specific
robot platforms: reifying relevant elements as variables and
subsequently interacting with these variables in actions, i.e.
in Smalltalk code.

With the variables defined, the definition of the state
machine for the behavior starts as below. The machine is
called Dora (for Dora the Explorer), and initially defines two
states and two transitions:

6 ( machine Dora
7 ( s t a t e f o r w a r d
8 ( onentry
9 [ motA v a l u e s t a r t A t S p e e d : 5 5 .

10 motB v a l u e s t a r t A t S p e e d : 5 5 . ] )
11 ( o n e x i t [ motA v a l u e s t o p . motB v a l u e s t o p ] ) )
12 ( s t a t e l o o k i n g )
13 ( ontime 600 f o r w a r d �> l o o k i n g t�l ook )
14 ( ontime 120 l o o k i n g �> f o r w a r d t�f o r w a r d )
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Lines 7 through 11 specify the forward state. The block
in lines 9 and 10 is executed whenever this state is entered.
As it represents the robot moving forward, both motors are
started at 55% of top speed. The block in line 11 is executed
whenever the robot leaves the forward state and therefore
stops both motors. The looking state in line 12 does not
define any actions.

Note that both blocks use the motor variables defined
in lines 1 and 2, and always send them the value mes-
sage first. This is because all variables are in fact Smalltalk
ValueHolders, as we will discuss in Section 4.2.

Lines 13 and 14 show two timeout transitions. The num-
bers given in the transitions specify a timeout in millisec-
onds, starting from when the source state is entered, and trig-
ger after the timeout is reached. The text of the remainder of
the transition specifies, respectively source state, destination
state, and transition name.

With this code in place, the robot alternates between
moving forward for 0.6 seconds, and then waiting for 0.12
seconds. In those 0.12 seconds the three different sensors
are polled (which takes a bit less than 0.12 seconds), as is
defined in the next three lines of code:

15 ( event w a l l [ u l t r a v a l u e r e a d < 20 ] )
16 ( event r i gh tbump [ r i g h t t o u c h v a l u e r e a d = 1 ] )
17 ( event l e f t b u m p [ l e f t t o u c h v a l u e r e a d = 1 ] )
18 ( on w a l l l o o k i n g �> backup t�backup )
19 ( on r i gh tbump l o o k i n g �> backup t�r t�backup )
20 ( on l e f t b u m p l o o k i n g �> backup t�l t �backup )

Lines 15 through 17 define events. The interpreter will
evaluate the actions for these events only if triggering these
events can cause a transition to occur. In this case, the transi-
tions on line 18 through 20 may occur as they start from the
looking state and go to a backup state, defined below.

In summary: if none of the events trigger, the robot goes
to the forward state, otherwise it goes to the backup state.

21 ( s t a t e backup
22 ( onentry
23 [ motA v a l u e s t a r t A t S p e e d : �32.
24 motB v a l u e s t a r t A t S p e e d : �32. ] )
25 ( o n e x i t [ motA v a l u e s t o p . motB v a l u e s t o p ] ) )
26 ( ontime 300 backup �> t u r n t�t u r n )
27 ( s t a t e t u r n ( onentry
28 [ motorA v a l u e s t a r t A t S p e e d : �32.
29 motorB v a l u e s t a r t A t S p e e d : 3 2 . ] )
30 ( o n e x i t [ motA v a l u e s t o p . motB v a l u e s t o p ] ) )
31 ( ontime 700 t u r n �> f o r w a r d t�t f o r w a r d )
32 )
33 ( spawn Dora f o r w a r d )

The above backup, and turn states, together with the
t-turn and t-tforward transitions implement the behav-
ior of backing up, turning around, and resuming moving for-
ward. The last line of code specifies that the Dora machine
should be started by the interpreter and that its initial state
is forward. This spawn statement also can be used as an
action in an onentry of a state, which means that when this
state is entered the specified machine should be interpreted.

This code is sufficient for implementing the explorer be-
havior. When editing this code in LRP, the interpreter is al-
ways running and updating the interpreted machine while
the programmer types, and moreover the LRP window,
shown in Figure 2, displays the tree of current machines, the
contents of variables, and a visualization of the machine. The
visualization highlights the currently active state (looking
in the figure) and the last taken transition. Also, variables
can be inspected and their values set.

3. Bridging LRP to Robot Hardware:
Controlling the Mindstorms

LRP is at its core a live programming language for nested
state machines. It is implemented in Pharo, using Petit-
Parser [10] as the parser generator, Roassal2 [2] for the vi-
sualization of the state machines, and Spec [11] to build the
user interface.

The language features have been designed with the use
as a robotics behavior layer in mind, yet the language it-
self does not have any intrinsic robotics support. This re-
sponsibility instead lies on bridging software that spans the
gap to specific robot platforms. Currently, LRP comes with
a bridge to ROS [5], and the Lego Mindstorms EV3 [13] via
JetStorm [7]. In this section we present the latter and discuss
a practical issue we faced programming the Mindstorms.

3.1 Hard- and Software
The Lego Mindstorms EV3 [13] is the third iteration of the
Lego Mindstorms line. The embedded system of the set is
called the brick, and it features an 300 Mhz ARM9-based
processor, 64MB of RAM which runs Linux 2.6.x. The sen-
sor package (in the education version) is an ultrasound dis-
tance sensor, two touch sensors, a color sensor and a gyro-
scopic sensor. Three motors are supplied, each motor with a
built-in rotation sensor. Last but not least, a comprehensive
set of Lego bricks are included, enabling the speedy con-
struction of a wide variety of robot hardware.

The brick also includes an USB port, and support for one
specific WiFi dongle, which allows the robot to be remote-
controlled via WiFi. JetStorm [7] is a Pharo package that
allows for the remote control of the EV3 by reifying the
brick, sensors and motors as Smalltalk objects that can be
sent messages. For example, sending the startAtSpeed:
55 message to a motor object causes a command to be sent
to the brick to start the corresponding motor at 55% of the
top speed the motor is capable of.

The LRP Mindstorms bridge currently consists of a fa-
cade class LRPEV3Bridge that is placed in front of JetStorm.
This class provides features for connecting to the brick over
IP and retrieving the various sensors and motors connected
to the brick. The latter is shown in lines 1 through 5 of the
example program. If there is no IP connection to the brick
when a sensor or motor is retrieved, the user is prompted
for the IP address of the brick and a connection is set up.
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Figure 2. The LRP editor showing part of the example of this text: the Dora machine.

The various sensors and motors that are retrieved are objects
provided by JetStorm, no facade is placed in front of them.

In our experience, the one, minimal, facade class has
proven to be sufficient to allow small experiments with the
Mindstorms. We are however faced with the situation that
LRP may grow to have multiple bridges to many different
robot API’s. For example the API to ROS is quite different.
It requires movement vectors to be sent, and their interpre-
tation by the robot eventually causes the respective motors
to operate. A wide disparity in how these APIs are exposed
to LRP programmers will cause a tight coupling of LRP
programs to a specific API and prohibit reuse of behaviors
across robot platforms, effectively splintering the language
in different versions for different APIs. It would therefore be
beneficial to have at least some basic uniformity of the API
that the different LRP bridges expose, at least when consid-
ering the lowest common denominator of the APIs. Conse-
quently this could possibly require the EV3 Bridge facade
to increase in complexity, translating the common API calls
to JetStorm calls. We consider the study of such a common
API as future work.

3.2 Experience Report: The Issue of Lag
Live Programming of the Lego Mindstorms is a very satis-
fying experience. It is possible to quickly prototype reason-
ably complex behaviors, while benefitting from the immedi-
ate feedback that live programming brings. We are able to
change the behavior of a robot while it is running and active
in its environment, and the visualization of the state machine
allows us to immediately establish in which state the robot is
and how it got there. There is only one negative point in the

entire experience, and that is the presence of network lag on
robot commands.

Sending commands from a computer to the brick over the
network and waiting for a reply causes a notable delay in
interactions of the LRP interpreter with the robot. Informal
microbenchmarks have shown us that it takes approximately
30 microseconds for a sensor read operation to return the
sensor’s value, and the same time to instruct a motor to start.
While this time lag may seem negligible, this turns out not
to be the case. For example, in line 15 to 17 of the example
code, three sensors are polled, which therefore takes approx-
imately 120 microseconds. This is a noticeable delay, and a
time in which the robot may advance a significant distance.
For the example the distance traveled in that time is 5 cm,
with the motors at 55% of top speed.

It is exactly because of this delay that the Dora behavior
is structured in a moving and a looking phase. The robot
first moves for a distance that is deemed ‘safe’, and then
stops to verify if the wall is too close. This results in a
stuttering behavior of the robot that is quite noticeable. If
reading sensors were immediate, there would be no need
for a looking state: the robot would continuously poll the
sensors for their data. As a result the robot would not stutter
and be able to explore at a higher overall speed.

We have experience with programming robots on the pre-
decessor of the EV3, having software run on the brick it-
self by using the leJOS [6] Java to NXT cross-compiler.
While the old brick has significantly inferior hardware, this
setup is orders of magnitude more responsive, resulting in
robot behaviors that are much more fluid and faster. Con-
sequently, Dora-like behaviors for example can be executed
much faster. Note that these experiments were in Java code
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and hence did not suffer from any overhead of the LRP in-
terpreter. The overhead of LRP is however almost negligible:
in informal tests, the overhead for evaluating events and ex-
ecuting state transitions has been benchmarked to be around
one millisecond.

Ideally the robot behavior software would therefore run
locally on the EV3 itself. There is however, as yet, no sup-
port in Pharo for running on the EV3. As a point of reference,
only recently (April 2014) has the first beta release of leJOS
on the EV3 been made available. We have not yet been able
to experiment with it, nor do we have the resources required
to reimplement the LRP interpreter in leJOS.

4. Implementing LRP
The interpreter of LRP is at its core a plain interpreter imple-
mentation for nested state machines, extended in two ways
for live programming [4]. First it is robust with respect to
incomplete programs and keeps on executing in the face of
errors. Second it is able to modify the state machine while
it is running, adding and removing elements without always
requiring a restart.

There are two pieces of the implementation of the in-
terpreter that we discuss here, as they show how the use
of Smalltalk has aided us in its implementation, what are
limitations due to the implementation and how we plan to
address them. These two elements are compilation of the
blocks and variables as ValueHolders.

4.1 Compiling the Blocks
Actions are used to connect LRP to the API of the specific
robot platform. They also may need to perform any kind of
computation on sensor inputs and the state of variables to
establish whether events occur, and hence may also need
to update variables at some point. As a result we found
it a natural choice to allow actions to have the full power
of Smalltalk available and hence have them be Smalltalk
blocks.

Having actions as blocks however raises issues of per-
formance. While the behavioral layer is not a time-critical
element in the software of the robot, it does form part of a
computation chain that goes from sensor readings up to ac-
tuator actions. As such, any overhead that it adds in this pro-
cess does have effect on the performance of the robot. For
this reason, we decided that the overhead of executing ac-
tions must be minimal. Hence, in the interpreter actions are
compiled blocks: to run them only the value message needs
to be sent.

Parsing in LRP is performed by PetitParser [10], and
action blocks are also parsed, using the Smalltalk parser
that is part of PetitParser. As a result, when the interpreter
is passed the AST of the state machine to interpret, these
blocks have the form of ASTs. The interpreter traverses
the complete AST for the program and compiles all action
blocks. The result of the compilation of an action block is

a BlockClosure that has references to all the variables in
scope and hence just needs to be sent the value message to
execute.

The process of compiling the AST of an action block is
as follows:

1. a Dictionary is created of all variables in scope, taking
into account shadowing of variables.

2. Text for the signature for a method is created of the form
captureV:V:V:, taking as many V: arguments as the
number of variables in the dictionary.

3. The names of the parameters of this signature are the keys
in the dictionary. In the body of the method, the LRP
variables are hence in scope of the Smalltalk code.

4. The signature is appended with the string ’^ [1]’ and
this complete method definition string is parsed.

5. In the resulting AST method, the subtree for ’[1]’ is
swapped with the AST of the block to compile.

6. This method AST is compiled.

7. The resulting method is invoked, passing it the values
of the variables in the correct order. This causes the
BlockClosure to capture variable references such that
they may be used inside the code of the action.

For example, let us consider the onentry block of lines 9
and 10 of the Dora example. The result of step 5 is the AST
for the following:

1 c a p t u r e V : motB V: u l t r a V: r i g h t t o u c h
2 V: motA V: l e f t t o u c h
3 ˆ [ motA v a l u e s t a r t A t S p e e d : 5 5 .
4 motB v a l u e s t a r t A t S p e e d : 55 ]

Step 6 yields a CompiledMethod for the above, i.e. a
method whose execution returns the BlockClosure that
corresponds to the action (lines 3 and 4). In step 7, this
method is invoked with as arguments the values of the vari-
ables motB, ultra, righttouch, motA, lefttouch. The
returned BlockClosure has hence captured the references
for the variables it uses (motA and motB). This allows the
action to be executed by simply sending the value message
to this BlockClosure.

The compilation of action blocks has turned out to be
quite straightforward to implement, taking only about 20
lines of code (of arguably low complexity). We consider that
being able to achieve such a complex task so succinctly is a
testament to the power and flexibility of Pharo Smalltalk.

There are however two downsides to the current imple-
mentation. Firstly, the method that is compiled has no class
and an incorrect source code pointer. In our experience this
has caused issues when programming: the block cannot be
printed, the debugger does not work correctly and in some
cases even primitive error handling fails, causing Pharo to
crash. An important avenue of future work is to improve
the compilation process such that these issues are addressed.
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Secondly, methods can only take up to 16 arguments. Conse-
quently, if there are more than 16 arguments in scope, com-
pilation of the action block fails. A possible mitigation of
this issue would be to perform a semantic analysis of the
block to establish which variables are effectively used inside
the block and only pass these as arguments in step 2,3, and
7 above. We also consider this as future work.

In summary We were able to incorporate the full power
of an OO language in our state machine-based language
thanks to the fact that we have straightforward access to the
following:

• a parser of Smalltalk expressions that produces ASTs,
• ASTs of methods allowing for their compilation at run-

time, isolated from a class definition,
• blocks that capture the arguments of their enclosing

method when they are created.

4.2 LRP Variables are ValueHolders
In LRP, variables are key to interact with specific robot plat-
forms. This is because they are used to reify API elements
from these platforms and the code in actions interacts with
these elements. For example, in the Dora example above, ac-
tions start and stop motors and poll sensors. Variables how-
ever serve as more than that, and this can be already seen in
the Dora example. The example contains many magic num-
bers, e.g. motor speeds, minimal wall distance (in line 15),
and timeouts for the different transitions. All these numbers
can (and actually should) be replaced by the use of vari-
ables, turning these magic numbers into robot calibration
constants. Beyond cleaning up the code, this has as conse-
quence that they can then be modified in the LRP editor
while the program runs, effectively recalibrating the robot
as it runs. Lastly, if the turning time on line 31 would be a
variable, it could contain a random number that is set ev-
ery time a turn is about to begin. This randomizes the turns,
making the exploring behavior immune to being stuck in a
loop. Because all of the above reasons, variables must truly
be mutable.

Yet these variables are used by three different entities:
the original program AST that contains the result of vari-
able initialization, the LRP editor, and the different actions
that use these variables. Recall that these blocks get passed
these variables by reference when they are constructed, as
discussed in Section 4.1. As a consequence, any change to
the values of variables is invisible to these blocks! This is be-
cause changes to the values do not affect the references that
were passed to the blocks as they were constructed. Hence
variables may not be changed.

To address the issue that values of variables may not be
changed yet at the same time they must be mutable, we have
made use of ValueHolders. Every variable is a ValueHolder
that contains the value. This however entails that reading the
value of a variable requires sending the value message to

the variable, and setting the value of a variable is using the
value: message instead of normal assignment.

Our experience has shown in practice that in the begin-
ning of writing LRP code it is easily forgotten that vari-
ables are ValueHolders, leading to widespread errors in
behaviors. Such errors are however quickly revealed: sim-
ple variable accesses usually already cause problems as the
ValueHolder class implements few messages. We are plan-
ning transparent use of ValueHolders, i.e. not requiring the
use of the value and value: messages, as future work. We
have first considered source code manipulation of the code
in the block to automatically transform accesses and modi-
fications to the use of this messages. This however does not
address the issue of the variables being used and modified
outside of the block, e.g. when they are passed as method
parameters. A second possible path would be to try the new
Slots mechanism. We would have variables as slot instance
variables of a purpose-built class. The slot reading and writ-
ing mechanism would then implement the extra indirection
that is currently achieved by the ValueHolders. As the Slots
mechanism has not been fully implemented its suitability is
however yet to be determined.

In summary We required the use of a double indirection
to be able to have mutable variables, and the ValueHolder
mechanism has shown to be a fitting solution. Requiring the
use of value and value: messages in actions is however
suboptimal, and we are planning solutions to this issue.

5. Related Work
Considering robot behaviors using nested state machines,
two languages and tools are well-known: The Kouretes Stat-
echart Editor (KSE) [14] and XABSL [8]. In KSE state ma-
chines are graphically edited, with an option to start from a
text-based description. The tool then follows a model-driven
process to generates the executable code for these machines.
XABSL is text-based, using an XML representation of the
state machines. A variety of support tools are present, for
example, a tool that creates (static) diagrams of the machine.

None of the languages above provide any support for live
programming, and the live programming languages below
do not consider state machines as their computational model.

Live programming was first proposed by Tanimoto [12].
The language presented in that work is VIVA, a visual pro-
gramming language for image manipulation. More recently,
McDirmid proposed the SuperGlue language [9], based on
dataflow programming and extended with object-oriented
constructs. Live programming of the UI has been proposed
by Burckhard et al. [3], by adding specific features for live
UI construction to an existing programming language. The
keynote of Victor [15] shows multiple live programming
examples in Javascript, producing pictures, animations and
games. A recent addition to live programming is the Swift
language by Apple [1], which allows for live programming
in specific workspaces called Playgrounds.
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6. Conclusion and Future Work
In this paper we have reported on our first experiences of
writing Live Robot Programming (LRP) programs for the
Mindstorms EV3, and detailed how some of the features of
Pharo Smalltalk allowed us to accomplish its implementa-
tion.

We first gave a brief overview of LRP through the use of
an example program. The program implements a space ex-
ploration behavior on a differential drive robot constructed
using the Mindstorms (illustrated in Figure 1). We then dis-
cussed the LRP bridge to the Mindstorms. LRP allows for
the live programming of robot behaviors, yet is not linked
to a specific robot platform, instead relying on such bridg-
ing software. This was followed by an experience report that
focused on how the lag in sending commands to the EV3
negatively impacts robot performance. We then discussed
how specific features of Smalltalk have aided in the con-
struction of the LRP interpreter, more specifically the pars-
ing and AST manipulation and compilation support, blocks
and ValueHolders.

There are multiple avenues of future work, which we have
discussed in some detail along this text. In summary, these
avenues consist of the study of a minimal common API for
the bridges to different robot platforms, improvements of the
compilation process of action blocks, and elimination of the
ValueHolder messages for variables.

In our experience, live programming for robot behaviors
yields an order of magnitude faster development time, and is
a key enabler of fast prototyping of and experimentation with
behaviors. Lastly, without the language features of Smalltalk
and all the infrastructure available in Pharo its implementa-
tion would have been much more demanding, if not impos-
sible, to realize with the resources at our disposal.

More Information, Availability
The home page of LRP is http://pleiad.cl/LRP The
implementation of the language is open source, MIT license,
and download instructions are on its home page.
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Abstract
I propose an approach to managing new classes of Smalltalk
VM complexity which emerged due to recent advances in
technology, through the execution of the VM on formal mod-
els of the target processor. Three examples of this approach
are discussed. First, I describe out-of-ISA-band observation
of the VM based on full-system simulation in which the sim-
ulator is aware of the Smalltalk semantics. I also describe
experiments in mechanical co-synthesis of the VM and the
simulator from the same formal Processor Description Lan-
guage, leading to an automatically-retargetable JIT. The ma-
jor obstacle to the usefulness of this approach is the PDL’s
suitability for toolchain synthesis. Finally, an experimental
attempt to bridge from hardware structure directly to JIT is
discussed.

Categories and Subject Descriptors D.3.4 [Programming
languages]: Processors

Keywords Smalltalk Virtual Machine, Full-System Simu-
lation, Processor Description Language, Hardware-Software
Codesign, Instruction Set Architecture

1. Introduction
Since the fundamental design of the major Smalltalk VMs
has stabilized in the 1990s, the computing landscape has un-
dergone radical evolution. The merge of technologies tradi-
tionally characteristic of high-performance computing with
embedded computing, the System-on-Chip revolution, the
end of the uniprocessor era — all these changes necessitate
further evolution of the Smalltalk VM. One way to classify
these changes is by position relative to the Smalltalk VM: the
application workload we run on Smalltalk, vs. the comput-
ing platforms we run Smalltalk on. A shared characteristic of
both is an increase, and a change in the nature, of complexity
that the VM designer has to deal with.

Application workloads today often expose software de-
fects related to multiprocessor/multicore parallelism, race
conditions, or complex compiler optimizations; traditional
source-level debugging techniques [Rosenberg’96] are inef-
fective in these situations and result in prohibitively high
debugging effort. In-band observability aids (similar to
DTrace) do help factoring the complexities involved in such
defects to a limited extent.

The meaning of “performance” has been largely rede-
fined with the end of the uniprocessor era. In traditional VM
design, we mostly thought of “processor performance” in
terms of sequential instructions-per-second, and of Smalltalk
performance in terms of bytecodes-per-second and sends-
per-second, n-code cache size-efficiency, and other metrics
of similar nature. We now have very fast JITs making maxi-
mum use of the processor’s ILP features, saturating the hard-
ware in terms of bytecodes-per-second; very efficient PICs
giving maximum sends-per-second; yet today’s metrics of
performance have changed, so we would consider trading
sends-per-second for better power efficiency, as MIPJ (Mil-
lion Instructions Per Joule) has become a more important
performance characteristic than MIPS (Million Instructions
Per Second). A typical Big Data customer today is con-
cerned with the efficiency of the fundamental design of tradi-
tional Smalltalk object memory model, which imposes high
FFI marshalling overhead and high d-cache miss rate due to
high pointer dereference rate (“pointer-chasing”) inherent in
such object memory.

Modern architectures on which we run Smalltalk are un-
dergoing a fundamental change which can be characterized
as “the end of the uniprocessor era”. Dave Patterson argues
[Patterson’06] that the main challenges of today’s computer
architecture are the following “walls”:

• Design cost wall
• Software legacy wall
• Power wall
• Memory wall
• ILP wall

These new classes of complexity mean the VM researcher
has a new task before them: to create new observation strate-
gies for getting insight into the Smalltalk VM. These mech-
anisms would allow us to regain “the clearness and ease of
comprehension” (to use David Hilbert’s expression) of the
VM’s behavior in today’s complex post-uniprocessor com-
puting environment; “for what is clear and easily compre-
hended attracts, the complicated repels us”.



2. Out-of-Band VM Observation
The Instruction Set Architecture (ISA) is the interface be-
tween software and the processor; when the program (for
example, the Smalltalk VM) is running, this interface can be
thought of as a communication channel between the program
and the processor (one could imagine the instruction stream
to be the program-to-processor direction of that channel, the
other direction being the execution results: register values,
flags, branching outcome, traps, etc.; we should also not for-
get about external signals flowing into the processor). Gen-
erally the mechanisms that we use to gain an understanding
of what is happening in the software, can be classified by
their positon relative to that communication channel as ei-
ther In-Band or Out-of-Band.

Traditional debuggers [Rosenberg’96] are an example
of In-Band mechanism. In-band mechanisms are inherently
limited in what kind of information they can provide about
the system being investigated. They also lack deterministic
repeatability as well as reverse execution capabilities. This
deficiency renders them incapable of aiding in understanding
such important classes of situations as — to point out only
one class — race conditions in parts of the system driven by
asynchronous external events (e.g. network interrupts). In-
band mechanisms are also destructive to the machine state
(in other words, they are not truly transparent to the ob-
served system). For example, hitting a hardware breakpoint
will cause the execution of the breakpoint interrupt service
routine and of the whole chain of context transitions, chang-
ing the state of the machine at the system level, and at a
minimum, destroying the state of the memory cache hierar-
chy; in the end, analysis of e.g. timing-related phenomena
becomes impossible under this class of debuggers.

In contrast, an Out-of-Band observation mechanism is
any observation mechanism which does not work over the
same ISA interface to the processor as the observed system.
In the rest of this paper, I will talk about the following out-
of-band mechanisms and my experiments to use them for
better understanding of the Smalltalk VM:

• Functional simulation of the system at different levels of
fidelity (instruction-accurate, cycle-accurate, etc.);

• Software simulation of a structural model of hardware;
• Custom-Instrumented FPGA models of hardware.

In section 6, I describe an experiment in which both
the VM and (the simulator for) the machine on which the
VM executes, are both automatically derived from the same
processor description written in a formal language.

3. Full-System Simulation
Not to be confused with emulation (which focuses on mim-
icking the function of the emulated system; Bochs and
QEMU are examples of processor emulators), system sim-
ulation is concerned with modeling the internal state of the

simulated system. Simulation can rougly be generally clas-
sified into structural and behavioral. An extreme example
of a structural model of a microprocessor is Michael Steil’s
transistor-level simulation of MOS 6502. Verilog simulation
of the RTL-level hardware design of OpenSPARC T1 would
be a more typical example of structural simulation.

Behavioral simulation is faced with trade-offs between
completeness, accuracy, and efficiency. At the low side of the
completeness scale are user-program-level simulators. At the
opposite high side are full-system simulators. “Full-system”
means that the simulation’s functional fidelity is complete
enough to run the whole operating system and applications
unmodified and unaware of running in a simulation. Orthog-
onal to the measure of completeness is the measure of ac-
curacy, i.e. regard of the model to certain aspects which do
not affect the model’s ability to execute the operating sys-
tem quite fine in other aspects. The prime example of this
concept is timing accuracy, roughly dividing simulators into
instruction-accurate and cycle-accurate. Accuracy comes at
the price of efficiency. Using more precise terms, in Sys-
temC TLM language, the lowest level of timing accuracy is
software timing: the time unit is one instruction, and the tim-
ing of memory hierarchy is not modelled at all (nor do these
software-timed simulations model other microarchitectural
time aspects such as out-of-order execution). Virtutech Sim-
ics in native mode and IBM CECsim use this level of time
model accuracy.

Loose Timing and Approximate Timing are the next two
levels of time modeling. These more accurate models come
with progressively higher performance cost. In recent years,
there has been a proliferation of full-system simulators of-
fering extremely accurate microarchitechure-level models.
Taken together, the Simics Microarchitectural Interface,
Flexus, GEMS [Martin’05], Opal (formerly called TFSim
[Mauer’02]), M5 [Leupers’10], GEM5 [Binkert’11], present
a rich variety of cycle-accurate simulation approaches and
provide models for a wide selection of ISAs.

4. Smalltalk-Aware System Simulation
Today’s prevalent full-system simulators allow complete
programmatic access to all aspects of the simulation. The
fundamental event model, the processor, the memory hierar-
chy, and the peripheral devices are all modelled by loosely-
coupled modules interacting via open APIs. These APIs
allow automatic detailed analysis of the simulated execu-
tion. There are numerous modules available today providing
full symbolic debugging of C programs, deep awareness of
various operating systems’ interal functionality, analysis of
execution of network stacks, etc.

Wright et al. [Wright’06] use a similar approach for
out-of-band introspection of the HotSpot JVM. Using full-
system simulation of the SPARC processor, they were able
to gain significant new insight into the interaction of the VM



with the memory hierarchy, and in particular into the effect
of GC and n-method recompilation on cache efficiency.

In that light, full-system simulation appeared like a
promising approach to gain new understanding of the Smalltalk
VM. In one experiment, I created a module which makes the
simulator aware of the semantics of execution of the Cog
JIT VM. Because at the time of these experiments Cog JIT
only ran on IA32, the FSS system selected for this experi-
ment was Simics simulating an in-order Intel x86 processor
running a stock “Tango” target (a Fedora Core Linux). The
module introspects into the receiver object at any instruction
when the processor is executing n-code. This is done using
the simulator’s Python API (for exploration, it felt more “im-
mediate” than the also-available C API). First, the receiver
oop, which in IA32 Cog JIT is kept in the %EDX register, is
obtained from the state of the simulated processor:

oop = conf.cpu0.edx

The following simple function then does some reasoning
about the object:

def print_class_of_oop(oop):
if ((oop & 1)==1):

print "SmallInteger"
else:

headerType = smalltalk_headerType(oop)
if (headerType==3):

print "...looks like compact class..."
else:

word2 = read_virt_value(oop-4, 4)
classOop = word2&0xFFFFFFFC
print "class oop: ", hex(classOop)
clsNameOop = read_virt_value(classOop+32, 4)
print "class name oop: ", hex(clsNameOop)
str=""
for offset in range(smalltalk_objByteSize(clsNameOop)):

str += "%c" %
read_virt_value(clsNameOop + 4 + offset, 1)

print str

First we look at the tag bit to see if the oop is a pointer or a
SmallInteger. A SmallInteger does not leave much to further
introspection. With a pointer, we dereference it to access the
object header:

def smalltalk_headerType(oop):
return read_virt_value(oop, 4) & 3

where memory is accessed like this:
# Read a little-endian value from a physical address.
def read_phys_value(paddr, len):

cpu = conf.cpu0
val = 0L
for i in range(len-1, -1, -1):

try:
val = (val<8) | SIM_read_phys_memory(cpu, paddr+i, 1)

except:
raise PTrackError("%s can not read byte at p:0x%x"

% (cpu.name, paddr+i))
return val

# Read a little-endian value from a virtual address.
def read_virt_value(vaddr, len):

cpu = conf.cpu0
try:

paddr = SIM_logical_to_physical(cpu, Sim_DI_Data, vaddr)
except:

raise PTrackError("%s can not translate v:0x%x to physical"
% (cpu.name, vaddr))

return read_phys_value(paddr, len)

(The simulator interprets the state of the simulated MMU
and performs address translation, modeling the details of the
processor’s TLB in SIM_logical_to_physical()). The
crucial difference between this simulator-side read and print-
ing a memory value in a traditional debugger is that the
simulator-side read (and in fact, none of the operations in
this module) does not disturb the state of the processor. If
the simulation includes some sort of cycle-accurate model
of time (e.g. a model of the memory hierarchy), oop deref-
erencing will not affect the state of that model. This is in
contrast with the situation where the JIT dereferences the
oop: such debugee-side access will cause simulated cache
misses, pipeline stalls, or whatever other possible effects of
the “load” instruction are modelled at the present accuracy
level (cf. next section).

The simplest way to try the introspection module is to
stop the simulator at a “magic breakpoint” in the middle
of n-code. We insert a no-effect instruction into the emitted
n-code. This “magic instruction” should not only have no
effect but also be extremely unlikely to occur in real code.
For example, on IA32 a usual candidate is

xchg %bx, %bx # cf. 16r66 below

(To make the Cog JIT emit the magic instruction, first
an abstract RTL instruction and its IA32 concretization are
defined. The abstract instruction is added at the end of the
list in CogRTLOpcodes>>initialize, and #initialize
is resent. We also need to add a new method:

Cogit>>Magic
<inline:true>
<returnTypeC:#’AbstractInstruction*’>
^self gen: Magic

The IA32 concretization amounts to changing
CogIA32Compiler>>dispatchConcretize

opcode caseOf: {
...
[Magic] -> [^self concretizeMagic].

}

and specifying the instruction encoding by adding this new
method:

CogIA32Compiler>>concretizeMagic
"Will get inlined into concretizeAt: switch."
<inline: true>
machineCode

at: 0 put: 16r66;
at: 1 put: 16r87;
at: 2 put: 16rdb.

^machineCodeSize := 3

Once the new instruction is defined, we can modify the JIT
to emit it. For illustration purposes, I modified

genGetClassFormatOfNonInt: instReg
into: destReg
scratchReg: scratchReg

"Fetch the instance’s class format into destReg,
assuming the object is non-int."

| jumpCompact jumpGotClass |
<var: #jumpCompact type: #’AbstractInstruction *’>
<var: #jumpGotClass type: #’AbstractInstruction *’>
cogit Magic. "THIS WILL STOP SIMULATION"



"Get header word in destReg"
cogit MoveMw: 0 r: instReg R: destReg.
... "rest of method"

The VM is regenerated and recompiled after these changes.)
After magic instruction support is installed in the JIT, the

simulator is instructed to run the simulation until it encoun-
ters the magic instruction; with the simulator paused, our
print_smalltalk_receiver() function can be invoked
from the simulator’s command-line interface.

In a more practical scenario, various routines in the
Smalltalk-aware module can be driven by callbacks from the
simulator. One useful application is collecting statistics. If
the simulation includes modeling of microarchitectural de-
tails, this technique can provide information about relation-
ships between high-level Smalltalk abstractions and the mi-
croarchitectural phenomena: for example, it would be possi-
ble to make queries such as “cache hit ratio when perform-
ing linked sends, but only when the receiver isKindOf: this
specified class”.

Even more interesting is stopping simulation and return-
ing control to the simulator interface when certain program-
matically specified conditions are met. The condition can be
as simple as segmentation fault. Quite often in today’s par-
allel computing environments, a bug could be caused by an
extremely rare race condition in an asynchronous interrupt-
triggered routine, and not reproducible in staged forward ex-
ecution. This class of problems is extremely well-suited to
debugging in simulation. We record some number of last
simulation steps in a ring buffer. We run the simulation until
the VM crashes. At that point, we can analyze the execution
steps that led to the crash (performing the Smalltalk-aware
introspection available to us at any step).

5. Deriving a JIT from Processor Description
Language

A number of Smalltalk VM implementations have attempted
various degrees of retargetability. While the original “PS”
VM [Deutsch’83] strictly targeted Motorola 68000, its suc-
cessor HPS [Miranda:Contexts], [Miranda:Thread] uses the
C macro-processor to achieve a degree of portability by pro-
viding a “processor definition file” containing an agreed-
upon set of “#define” C macro definitions. The Cog VM
[Miranda:Cog], written in a subset of Smalltalk, contains ab-
stract classes which represent a common concept of what a
“processor” can be (“abstract RTL”); these are subclassed to
describe concrete target ISAs (such as IA32 or a particular
ARM variant).

Being embedded in the VM implementation language and
relatively low-level, such ad-hoc processor description facil-
ities require the human implementor of the port to compre-
hend the details of the processor/platform specifications and
manually program the mapping to the “common machine”,
working in that implementation language. One limiting fac-
tor of this approach is the space of processors which can

be parametrized given a particular “common machine”: of-
ten, the set of considerations relevant to a new processor
architecture can not be expressed in terms of the existing
“common model”. Thus, there is a trade-off between speci-
ficity (because we need to be able to derive a translator from
the processor description) and generality (to cover a wide
enough family of processors).

An even more important factor is the complexity of to-
day’s architectures and OS platforms. As an example, the
ARM Architecture Reference Manual is 5158 pages (as
of the ARMv8 “A.a” issue) of natural English language.
Moreover, the information in the ARMARM alone is not
enough: a VM port would need to take into account con-
siderations of performance optimization, details of the ABI
on the platform, etc. The effort on the part of the author of
the port to comprehend all this complexity, makes the cost
per processor port prohibitive even in the case of univer-
sal processor ISAs. The port author is trapped in a cycle
of re-interpretation of the natural language of the specifi-
cations, as details of his interpretation differ from the pro-
cessor designer’s (ISA implementor’s). This kind of porting
effort becomes completely unrealistic in today’s chip-level-
integration systems-on-chip often involving application-
specific instruction sets, which are quickly growing to be-
come the norm in embedded applications.

Processor Description Languages [Mishra’08] have been
used for automatic synthesis of compilers from formal spec-
ifications of processors in parallel with synthesis of hard-
ware, thus eliminating or reducing the problem of soft-
ware/hardware ISA interpretation discrepancy mentioned
above. Pioneering work in PDLs in the 1970s was Gerhard
Zimmermann and Peter Marwedel’s MIMOLA (Machine
Independent Microprogramming Language). Since then, a
number of processor description languages and technologies
have been developed, such as nML (the processor model-
ing language in Synopsys’ “IP Designer” system), LISA
from RWTH Aachen University, EXPRESSION, ArchC,
and many others. I chose the open-source ArchC language
and system [Azevedo’05], [Mishra’08] as the base for my
experiments with deriving a Smalltalk VM from a PDL.

The ArchC system takes a processor description (writ-
ten in the ArchC language) and generates a simulator for
the processor. In addition, the ACCGen compiler generator
[Auler’12] takes an ArchC processor description and gener-
ates an LLVM “llc” backend.

My experiments with deriving a JIT from ArchC PDL did
not involve the LLVM infrastructure. Also, in the proof-of-
concept I did not go beyond a trivial mockup of the Cattell
algorithm [Cattell’80]; in other words, no optimization was
attempted as my focus was on the automatic/unsupervised
retargetability and the guarantees it gives against the hard-
ware/software ISA interpretation discrepancies mentioned
above.
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Figure 1. Deriving a JIT from PDL

Figure 1 shows the basic structure of the JIT generator.
The same PDL specification of the processor is input to both
the ArchC system and the JIT generator. ArchC generates a
system simulator allowing out-of-band debugging of the JIT,
in line with ideas described in sections 3–5 of this paper. The
JIT generator is implemented as a Smalltalk program. With
the aid of the T-Gen parser generator, it re-uses ArchC’s and
ACCGen’s PDL grammars. The parser produced by T-Gen,
transforms the processor description into Machine Tables
which parametrize the Cattell algorithm [Cattell’80]. The
Machine Table is a set of productions, and Cattell’s algo-
rithm searches for a suitable chain of rewrites leading from
the IR goal on the left (“TCOL” in Cattell’s paper) to instruc-
tion terminals on the right. The experimental Smalltalk JIT
is much simpler. While the general Cattell algorithm allows
arbitrary and possibly recursive rewrites, my JIT’s deriva-
tions always consist of two fixed productions: (1) bytecode
::= RtlInstruction*, and (2) RtlInstruction ::= MachineIn-
struction*. The search degenerates into a lookup in the table.
In this sense, the JIT is equivalent to any well-known JIT
such as Cog or HPS: the difference is not in what code gen-
eration it does, but in how it is parametrized automatically
from a formal specification rather than manually by the VM
programmer. However, with the concept of a Smalltalk JIT
derived from PDL now proven possible, there is no reason,
in principle, why this approach would not work with more
advanced forms of code optimization.

Achieving the derived JIT met with two primary difficul-
ties: (1) the presence of algorithmic definitions in the ArchC
PDL, and (2) formal specification of platform ABI.

Extraction of instruction semantics from the ArchC pro-
cessor description. ArchC’s primary focus is on synthesis
of efficient simulators. To facilitate this goal, ArchC allows
algorithmic expression of instruction semantics. Auler et al.
[Auler’12] give the following example of how an instruction
behavior may be specified in custom C++ within the PDL
model:

void ac_behavior( add )
{

RB[rd] = RB[rs] + RB[rt];
};

This approach of being able to specify processor behav-
ior as an algorithm expressed in a universal programming
language, favors the point of view of simulation over that
of both hardware synthesis and compiler generation. Several
authors, including Marwedel and Leupers [Marwedel’94],
proposed various approaches to the problem of instruction
semantics extraction for the purpose of instruction selection.
These approaches generally do not work for ArchC. After
all, due to the halting problem it is not even possible to de-
cide, given such algorithmic description of an instruction,
whether the instruction’s execution will terminate at all, let
alone to compute the information necessary for instruction
selection. To solve this problem for their C complier, Auler



et al. [Auler’12] propose an RTL-based extension to ArchC.
Existing ArchC processor models need to be amended to
include this instruction-semantics information. Their ACC-
Gen compiler demonstrates that such amendment does in
fact allow to synthesize a working C compiler. My Smalltalk
JIT reuses Auler’s extensions to the PDL language and the
extended models of ARM, SPARCv8, PowerPC and MIPS
which are provided with the ArchC distribution.

The major drawback of this approach is that there are es-
sentially two processor definitions (declarative and procedu-
ral) and we are again facing the same problem of diverging
ISA interpretations.

FFI Glue is the custom machine code that connects the
abstract computation machinery of the JIT to the rest of
the system which is written in C. Its crucial role is that it’s
the way for computation to produce effect. The main issue
the glue has to deal with, is the platform ABI convention
about the C stack which the glue has to synthesize and
manage. Most of the time, PDL models don’t include an ABI
specification. After all, in a full-system simulation such ABI
model is altogether not needed because ABI is a software-
level concern: it exists entirely within the software system
running on top of the simulator.

ACCGen partially addresses this problem by extending
ArchC to describe calling conventions; however, only their
ARM model contains such ABI descriptions.

In light of all this, a production PDL-derived JIT for
Smalltalk may need a different substrate for translator syn-
thesis. Ideally, the same processor description would be
used to synthesize the hardware, the compiler toolchain
(Smalltalk VM included) and the simulator. Machine-readable
ABI specs do not need to be integral part of the processor
description, but will have to be the accepted starting point of
the synthesis of the C toolchain, lest calling convention in-
terpretation discrepancies lead to ABI violations analogous
to the hardware-software discrepancy bugs discussed above.

6. Introducing Smalltalk Awareness into
Structural Models

In the ideal scenario, the final destiny of a VM synthesized
from a high-level processor description, would be running on
hardware structures synthesized from the same description
(after being debugged in simulation derived from the same
description). At the time of this writing, I am not aware of
a PDL framework openly available and suitable for such
end-to-end experiments with Smalltalk. There is no doubt it
will become available in the future. How can we attempt to
bridge processor structure and the VM before we have such
an end-to-end framework in our hands?

A number of processor instrumentation approaches has
been described in the literature [Stollon’11]. EJTAG is a pro-
cessor debugging facility very specific to MIPS. ARM has a
comparable instrumentation system called ETM. I am not
aware of open implementations of either EJTAG or ETM,

Figure 2. Block Diagram of OpenSPARC T1 [Weaver’08]

and it is not clear how either can be used as the foundation
for a research effort to implement Smalltalk-aware processor
instrumentation.

Therefore, in one experiment, I attempted to use a hard-
ware description of a complete processor as the starting
point. In recent years, open-source processor and system-
on-chip IP has matured to a point of significant prac-
tical importance in critical production systems. The ex-
periment described here starts from the Verilog source
code for the OpenSPARC T1 microprocessor available un-
der the GNU General Public License. It might be possi-
ble, using approaches discussed by Marwedel and Leupers
[Marwedel’94], to extract enough ISA semantics from this
structural description to be able to synthesize a Smalltalk
VM, thus closing the hardware-software circle. I have not
attempted this yet. Instead, in this experiment, the hardware
structure is extended with probes which afford access to the
internal state of the hardware at points of interest to the VM
researcher and automatic analysis of that state in accord with
the programmatic structure of the Smalltalk VM.

The OpenSPARC microprocessor consists of a designer-
variable number of processor cores, connected to the mem-
ory cache, FPU and other components by the Cache Cross-
bar (CCX). Figure 2, reproduced from [Weaver’08], shows a
block diagram of OpenSPARC T1. In a reference implemen-
tation of OpenSPARC on FPGA [Thatcher’08], only the pro-
cessor core is synthesized from Verilog to the FPGA’s pro-
grammable logic. The CCX, as well as everything else on the
other side of it across from the core (memory interface, FPU,
etc., and also some system components which would be off-
chip in an ASIC implementation — e.g. Ethernet MAC; I
will call the total of these components “the off-core”), are
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Figure 3. OpenSPARC Implementation on XILINX Vir-
tex FPGA with Smalltalk-Aware Crossbar. Cf. the corre-
sponding diagram in [Thatcher’08], NB the position of the
Smalltalk module.

implemented in a XILINX EDK design. Although ultimately
both the OpenSPARC core and the EDK project are physi-
cally sharing the same programmable logic fabric, the Mi-
croblaze service processor, the Ethernet MAC, the mem-
ory controller etc. are just standard XILINX IP, and the
“off-core” functions are programmed in software running on
the Microblaze. This is what facilitates the Smalltalk-aware
probe. The off-core code (written in C) is amended with a
Smalltalk observation module. The module is controlled by
an agent program running on the debug host via the standard
Microblaze debug serial port. The module (and the agent
through it) have full access to the state of the OpenSPARC,
and can reason about Smalltalk objects and VM program-
structures similarly to the Smalltalk-aware FSS discussed in
Section 4.

Experimenting with this configuration suggests even
more importance of deriving hardware and software from
a common higher-level processor description (as in sec-
tion 5 above). Indeed, even the reference implementation
of this mainstream microprocessor contains two embodi-
ments (ASIC- and FPGA-oriented) which are not derivative
of each other, and hence potentially diverging interpretations
of the SPARCv9 ISA.

7. Conclusion
Out-of-band observation techniques can provide deeper in-
sight into crucial aspects of the Smalltalk VM than possible
with traditional observation approaches. In particular, this
strategy can shed new light on the VM’s use of time and
power. A JIT can be written in a processor-agnostic man-
ner. Targeting such JIT at a new ISA is a matter of automati-
cally processing the new architecture’s PDL description. The
same PDL description can also be used for the synthesis of

the actual processor, as well as of the simulators for the out-
of-band observation, thus eliminating the hardware/software
mismatch as a major source of software defects.
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Reducing Waste in Expandable Collections:
The Pharo Case
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Abstract
Expandable collections are collections whose size may vary
as elements are added and removed. Hash maps and ordered
collections are popular expandable collections. In the Pharo
programming language, expandable collection classes offer
an easy-to-use API, however this apparent simplicity is
accompanied by a significant amount of wasted resource.

We describe some improvements of the collection library
to reduce the amount of waste associated with collection
expansions. We have designed a new collection library for
Pharo that exhibits better resource management than the
standard library. Across a basket of 17 applications, our
optimized collection library significantly reduces the memory
footprint of the collections: (i) the amount of intermediary
internal array storage by 73%, (ii) the number of allocated
bytes by 67% and (iii) the number of unused bytes by 72%.
This reduction of memory is accompanied with a speedup of
about 3% for most of our benchmarks. We further discuss
the applicability of our findings to other languages, including
Java, C#, Scala, and Ruby.

1. Introduction
Creating and manipulating any arbitrary group of values is
largely supported by today’s programming languages and
runtimes [1]. A programming environment typically offers a
collection library that supports a large range of variations in
the way collections of values are handled and manipulated.

Collections exhibits a wide range of features [1–3], includ-
ing being expandable or not. An expandable collection is a
collection whose size may vary as elements are added and
removed. Expandable collections are typically implemented
by wrapping a fixed-sized array. An operation on the collec-
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tion is then translated into primitive operations on the array,
such as copying the array, replacing the array with a larger
one, inserting or removing a value at a given index.

Unfortunately, the simplicity of using expandable collec-
tions is counter-balanced by resource consumption when not
adequately employed [4–6]. Pharo1 is a dynamically typed
programming language which offers a large and rich collec-
tion library. Consider the case of a simple ordered collection
(OrderedCollection in Pharo and ArrayList in Java). Using
the default constructor, the collection is created empty with
an initial capacity of 10 elements. The 11th element added
to it triggers an expansion of the collection by doubling its
capacity. We have empirically determined that in Pharo a
large portion of collections created by applications are empty.
As a consequence, their internal arrays are simply unused.
Moreover, only a portion of the internal array is used. After
adding 11 elements to an ordered collection, 9 of the 20 slot
arrays are left unused. Situations such as this one scale up as
soon as millions of collections are involved in a computation.

This paper is about measuring wasted resources in Pharo
(memory and execution time) due to expandable collections.
Improvements are then deduced and we measure their impact.

Research questions we are pursuing are:

A - How to characterize the use of expandable collections
in Pharo? Understanding how expandable collections are
used is highly important in identifying whether or not
some resources are wasted. And if this is case, how such
waste occurs.

B - Can the overhead associated with expandable collections
in Pharo be measured? Assuming the characterization of
collection expansions revealed some waste of resources,
measuring such waste is essential to properly benchmark
improvements that are carried out either on the application
or the collection library.

C - Can the overhead associated with expandable collections
in Pharo be reduced? Assuming that a benchmark to
measure resource waste has been established, this question
focuses on whether the resource waste accompanying

1 http://www.pharo-project.org
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the use of a collection library can be reduced without
disrupting programmer habits.

Our results shows the Pharo collection library can be
significantly improved by considering lazy array creation
and recycling those arrays. The expandable collections of
Java, Scala, Ruby and C# are very similar to those of Pharo.
We therefore expect our recommendations to be beneficial in
these languages.

This paper is structured as follows: Section 2 describes
the Pharo expandable collections and synthesizes their im-
plementation. Section 3 describes a benchmark composed of
17 Pharo applications and a list of metrics. Section 4 details
the use of expandable collections in Pharo, both from a static
and dynamic point of view. Section 5 details the impact on
our benchmark to have lazy array creation. Section 6 presents
a technique to recycle arrays among different collections.
Section 7 describes an approach to find missing collection
initialization. Section 8 discusses the case of other languages.
Section 9 presents the work related to this paper. Section 10
concludes and presents our future work.

2. Pharo’s Expandable Collections
The collection library is a complex piece of code that exhibits
different complex aspects [7]. One of these aspects is whether
a collection created at runtime may be resized during the
life time of the collection. We qualify a collection with a
variable size as “expandable”. An expandable collection is
typically created empty, to be filled with elements later on.
Typical expandable collections include dictionaries (usually
implemented with a hash table), lists, growable arrays in
which elements may be added and removed during program
execution. Interestingly, expandable collections are designed
to only expand. Removing elements from a collection does
not trigger any shrinkage of the internal collection. We
therefore only focus on element addition and not removal.

2.1 Issues with expansions
Expandable collections are remarkable pieces of software:
most expandable collections have a complex semantic hid-
den behind a simple-to-use interface. Consider the class
Dictionary. The class employs sophisticated hashing tables to
balance efficiency and resource consumption. Such complex-
ity is hidden behind what may appear as trivial operations
The programmer has to simply address what to add or remove
from the collection while the collection implementation takes
care of growing or shrinking the collection accordingly.

Expandable collections commonly used in Pharo employ
a fixed-sized array as an internal data structure for storage.
Adding or removing elements from an expandable collection
are translated into low-level operations on the internal storage,
typically copying, setting or emptying a particular part of the
array storage.

The creation of an expandable collection may be parametri-
zed with an initial capacity. This capacity represents the

initial size of the array’s internal storage. The size of the
collection corresponds to the number of elements actually
stored in the collection. Adding elements to a collection in-
creases its size and removing elements shrinks it. When the
size of the expandable collection reaches its capacity or close
to it, the capacity of the collection is increased, leading to an
expansion of the collection. A collection-specific threshold
ratio size / capacity drives the collection expansion. A 0.75
and 1.0 are commonly used thresholds (0.75 for collections
operating with hashtags values and 1.0 for every other col-
lections). Consider the class OrderedCollection, a frequently
used expandable collection. Consider an ordered collection
of a given capacity c. Adding one element to the collection
increases its size s by one. When s = c, then the collection
is expanded to have a capacity of 2c elements.

Expanding a collection is a three-step operation summa-
rized as follows:

1. Creation of a larger new array – the size of the collection
having reached its capacity (i.e., the size of the internal
data storage), a new array is created, typically twice as
large as the original array.

2. Copying the old array into the new one – content of the
old array is entirely copied into the first half of the new
array.

3. Using the new array as the collection’s storage – the
expandable collection takes the new array as its internal
storage, realized by simply making the storage variable
point to the new array. The old array is garbage collected
since it is not useful anymore.

Although efficient in many situations, expandable collec-
tions may result in wasted resources, as described below.
Expansion overhead. Expanding a collection involves cre-
ating and copying of possibly large internal array storage.
Consider the following micro benchmark:

c := OrderedCollection new.
[ 30000000 timesRepeat: [ c add: 42 ] ] timeToRun

=> 3375 milliseconds

This benchmark simply measures the time taken to add
30 million elements to an ordered collection. In our current
execution setting, the micro benchmarks reported in this
section have a variation of 7%.

The class OrderedCollection, when instantiated using the
default constructor, as above, uses an initial capacity of 10
elements. An expansion of the collection occurs when adding
the 11-th element. The capacity is then doubled. The size
of the collection is 11 and its capacity is 20. When the 21st
element is added to it, its capacity is 40.

Adding 30 million elements in a collection triggers
log2(30 000 000 / 10) = 22 expansions. Such expansions
have heavy cost, both in terms of memory and CPU time.
When the capacity is equal to or greater than the number of
elements to be added:
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c := OrderedCollection new: 30000000.
[ 30000000 timesRepeat: [ c add: 42 ] ] timeToRun =>

=> 1356 milliseconds

In such a case, no expansion occurs, thus resulting in
adding the elements without any expansion phases.
Copying of memory. At each expansion of the collection, the
whole internal array content has to be copied into the newly
created array. Consider the OrderedCollection in which 30 M
elements are added to it. Since the collection is expanded 22
times, the internal array has been copied 21 times.

At the first expansion, when the internal storage grows
from 10 to 20 slots, 10 slots are copied. Since each array
slot is 4 bytes long, 40 bytes have been copied. 80 bytes are
copied for the second expansion. Since the internal array size
increases exponentially, the number of bytes that are copied
scale up easily. Adding 30M elements produces 22 expan-
sions, incurring

P21
i=0 10 ⇤ 2i = 41M slot copies. In total,

41 ⇤ 4 = 164Mb of memory are copied between unnecessary
arrays. Such copying could be reduced or avoided by giving
a proper initial capacity to the collection.
Virtual memory. The memory of a virtual machine is divided
into generations. Garbage collection happens by copying part
of a generation into a clean generation. Such copying is likely
to happen across memory pages [9], since the new array is
likely to be in the young generation (i.e., part of the memory
used for short lived objects and new object creations). In
addition, the copying of arrays may activate part of the virtual
memory stored on disk if the part of the memory containing
the old array has been swapped to disk [9].
Collector pauses. Garbage collection copies and joins por-
tions of memory to reduce memory fragmentation [10]. Copy-
ing and scanning a large portion of memory, such as collec-
tions, may cause large and unpredictable collection pause
times. The garbage collection pauses in proportion to array
size [11].
Unnecessary slots. Expanding a collection doubles the size
of the internal array representation. As a consequence, a
collection having a size less than its capacity has unused
slots.

For example, adding 30 million elements to a collection
with the default initial capacity generates 22 expansions.
After the 22nd expansion, the collection has a capacity of
10⇤222 = 41,943,040, large enough to contain the 30,000,000
elements. As a consequence, the collection has 41,943,040
� 30,000,000 = 11,943,040 unused slots. Since each slot
weighs 4 bytes, nearly 48Mb of memory are unused after
having added the 30M elements.

Note that the issue of having unused portion of the array
has already been mentioned (Pattern 1, 3, 4 in [12]). Our paper
reports the evolution of the amount of unused memory space
against the improvement we have designed of the collection
library. Our approach to address this issue is new and has not
been considered before.

3. Benchmarking and Metrics
To move away from micro-benchmarks and understand this
phenomenon better on real applications, we pick a represen-
tative set of Pharo applications and profile their execution.

3.1 Benchmark
Appendix A lists the 17 Pharo applications we consider in our
benchmark. These applications are open source2, thus easing
a replication of our experiments. These applications are daily
used both in industries and academia. They are furthermore
supported by active communities.

We employ the benchmark to approximate how expand-
able collections are used in general.

3.2 Metrics about the collection library
We propose a set of metrics to understand how expandable
collections are used and what the amount is of resulting
wasted resources. The metrics that we propose to characterize
the use of expandable collections for a particular software
execution are:

• NC – Number of expandable Collections – This metric
corresponds to the number of expandable collections
created during an execution. This metric is used to give
relative numbers (i.e., percentages) for most of the metrics
described below.

• NNEC – Number of Non Empty Collections – Number of
expandable collections that are not empty, even temporar-
ily, during the execution.

• NEC – Number of Empty Collections – Number of ex-
pandable collections to which no elements have been
added during the execution. A collection for which el-
ements have been added then removed are not counted by
NEC.

• NCE – Number of Collection Expansions – Number
of collection expansions happening during the program
execution.

• NCB – Number of Copied Bytes due to expansions –
Amount of memory space, in bytes, copied during the
expansions of expandable collections.

• NAC – Number of internal Array Creations – Number of
array objects created used as internal storage during the
execution.

• NOSM – Number of collections that are filled Only in the
Same Methods that have created the collections.

• NSM – Number of collections filled in the Same Methods
that have created them.

• NAB – Number of Allocated Bytes – Accumulated size of
all the internal arrays created by a collection.

2 http://smalltalkhub.com
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• NUB – Number of Unused Bytes – Size of the unused
portion of the internal array storage. For a given collection,
this metric corresponds to the difference capacity � size.

3.3 Computing the metrics
Measuring these metrics involves a dynamic analysis to
obtain an execution blueprint for each collection. We have
instrumented the set of expandable collections in Pharo to
measure these metrics.

We measure only the collections that are directly created
by an application. Computation carried out by the runtime is
not counted. If we equally counted collections created by the
runtime and the application, a residual amount would have
to be determined since collections may be counted several
times across different applications.

Collections are often converted thanks to some utility
methods. For example, an ordered collection may be con-
verted as a set by sending the message asSet to it. Converting
an expandable collection into another expandable collection
sums up in our measurements.

Our measurements, used to characterize the use of ex-
panded collections and measure wasted resources associated
with them, have to be based on representative application
executions, close to what programmers are experiencing. Un-
fortunately, Pharo does not offer a standard benchmark for
measuring performance in the same spirit as DaCaPo [13].
We have designed our benchmark from two different sets
of program executions: (i) execution of unit tests and (ii)
performance scenarios.
Unit-test benchmarks. Running unit tests is convenient in
our setting since unit tests are likely to represent common
usage and execution scenarios [14]. We execute the unit tests
associated with each of the 17 applications.

The primarily purpose of a unit test is to validate cor-
rectness. A unit test typically represents a short execution
scenario that is quick to run. We will profile the execution of
unit tests to measure the creation of short-lived small collec-
tions. Executing unit tests is an action often performed by a
programmer. Optimizing this action is therefore a valuable
contribution. Note that we consider unit tests as part of the
applications. This means that collections created within a unit
test are counted in our measurement.
Performance benchmarks. We use 15 benchmarks that per-
form a computation on a large amount of input data. From
the 17 applications, we consider 5 applications for which it
makes actual sense to run a long execution. These applica-
tions are marked with an * and we have three benchmarks for
each of these. These benchmarks have been written by the
authors of the considered application and represent a typical
heavy usage of the application.
Referring to the benchmarks. The tables given at the end of
the papers show the result of our measurements. We refer to
the execution of unit tests for application X as “Benchmark
X”, X ranging from 1 to 17. The long executions are referred

to as “Benchmark bASTY, bNY, bPPY, bRegY, and bRY”,
where Y ranges from 1 to 3.

Table 3 gives the measurement of our benchmark using
the standard collection library of Pharo. This table is used as
the baseline for our improvements of the library.
Minimizing measurement bias. Carefully considering mea-
surement bias is important since an incorrect setup can easily
lead to a performance analysis that yields incorrect conclu-
sions. Despite numerous available methodologies, it is known
that avoiding measurement bias is difficult [8, 15]. An effec-
tive approach to minimize measurement bias is called ex-
perimental setup randomization [15], which consists in gen-
erating a large number of experimental settings by varying
some parameters, each considered parameters being a poten-
tial source of measurement variation. Our measurements are
programmatically triggered, meaning that multiple runs of
our benchmark is easily automatized. We have considered the
following parameters:

• Hardware and OS – We have used two different hardwares
and operating systems ((a) a MacBook Air, 1.3Ghz Intel
Core I5, 4Gb 1333 MHz DDR3, with a solid hard disk
and (b) iMac, Quad-core Intel Core i5, 8 Gb).

• Heap size – We run our experiment using different initial
size of the heap (20Mb, 150Mb, 300Mb).

• Repeated run – For each execution of the complete bench-
mark, we have averaged 5 runs, with a random pause
between each run.

• Randomized order – The individual benchmarks (i.e., a
unit-test benchmark or a performance benchmark) are
randomized at each complete benchmark run.

• Reset caches – Method cache located in the VM are
emptied before each run.

• GC – Garbage collector has been activated several times
before running each benchmark.

In total, we have considered 9 different experimental
setups. We did not notice any significant variation between
these experimental setups.

The measurements given in appendix are the result of an
average of 9 different executions, each considering a different
combination of the parameters given above.

4. Use of Expandable Collections in Pharo
applications

This section analyzes the use of expandable collections in
Pharo applications. The results given in this section answer
the research question A.

4.1 Dynamic analysis
We have run our two sets of our benchmark and profiled
their executions. The metrics given in Section 3.2 have been
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computed and reported in Table 3 for each of the applications
execution.

The execution of the 17 unit test benchmarks create a total
of 2,474,499 expandable collections and the 15 performance
benchmarks create 6,342,087 expandable collections. The
analyses this paper describes focus on the profiling of nearly
9M expandable collections produced by 32 different program
executions (17 unit test benchmarks + 15 performance bench-
marks).

Naturally, very few of these expandable collections live
through the whole execution since the garbage collector reg-
ularly cleans the memory by removing unreferenced collec-
tions. In our measurements, we do not consider the action
of the garbage collector on the collection themselves since
garbage collection is orthogonal to the research questions we
are focusing on.

The number of created collections indicates large dispar-
ities between the analyzed applications. Benchmarks 1, 10,
bReg1 and bReg2 involve a long and complex execution over
a significant amount of data, indicated by the large number
of created expandable collections. Benchmarks 2, 6, 8, bN1,
bN2, bN3 create a small number of collections, indicating
short executions.
Variation in the measurements. Two executions of the same
code may not necessarily create the same number of collec-
tions, even if no input/output or random number generation
is involved. Measurements vary little over multiple runs of
the benchmarks. Values reported in the tables in the appendix
have been obtained after 10 runs and have an average varia-
tion of 0.0095%. Although the applications we have selected
for our case study do not make use of random number gen-
eration, the use of hash values can make non deterministic
behavior. A hash value is given by the virtual machine when
the object is created. In the case of Pharo, such a hash value
depends on an internal counter of the virtual machine. Con-
sider the following code:

d := Dictionary new.
d at: key1 put: OrderedCollection new.
d at: key2 ifAbsentPut: [ OrderedCollection new ]

The class Dictionary uses the equality relation and hash
values between keys to insert pairs. If we have the relation
key1 = key2 and key1 hash = key2 hash, then the dictionary
considers that the two keys are actually the same and we
have only one instance of OrderedCollection. However, in
case that the hash is not overridden but = is overridden, the
relation key1 hash = key2 hash may be true only sporadically,
thus triggering a non deterministic behavior over multiple
executions3.
Empty collections. Table 3 indicates a surprisingly high pro-
portion of empty collections in our benchmarks. From over

3 Redefining = without redefining hash is a classic defect in software
programs and it is widely recognized as such. Unfortunately, this defect
is frequent.

8.6 million expandable collections created by our bench-
marks, 6.6 million (76%) have been created without having
any element added to them. Only 23% of collections have at
least one element added to them during their lifetime.

To understand this phenomena better, we will take a
closer look at the data we obtained. The number of empty
collections created by our benchmark varies significantly
across applications. Consider the application 10 and its
corresponding benchmark. Benchmark 10 creates a total
of 1.4M of expandable collections, for which only 14,891
are non-empty. This application is a refactoring engine that
applies pattern matching and rewriting rules on source code.
The engine is complex due to the underlying optimized logic
engine4. By excluding this application, the ratio of the number
of not empty collections for the unit test benchmarks rises
to 31.3% (NC= 1,043,634 and NNEC= 327,445): about one-
third of collections created by the unit tests are left empty in
the average.
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Figure 1: Frequency distribution of filled collections (NNEC)

Figure 1 shows the frequency distribution of the bench-
mark for both unit tests and performance benchmarks. There
are four applications that have less than 10% of collections
empty, and four applications that have between 20% and 30%
of collections that are not empty. Performance benchmarks
have a tendency to fill more expandable collections compared
with unit test benchmarks. This highlight an important dif-
ference between two unit-test benchmarks and performance
benchmarks. The first has tendency to create many empty col-
lections over the latter. Benchmark bN3 generates no empty
collection.
Cause of empty collections. We manually have inspected the
applications and benchmarks that generate a high proportion

4 Interestingly, PMD, a Java application similar to Refactoring, exhibits the
very same problem [6].
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of empty collections. A large proportion of the created empty
collections is caused by the object initialization specified
in the constructors. Consider the constructor of the class
RBVariableEnvironment:

RBVariableEnvironment >> initialize
super initialize.
instanceVariables := Dictionary new.
classVariables := Dictionary new.
instanceVariableReaders := Dictionary new.
instanceVariableWriters := Dictionary new

This constructor implies that each instance of RBVariable

Environment comes with at least four instances of dictionaries.
The class RBVariableEnvironment is part of a code meta-model
that belongs to the application Refactoring. Most instances of
RBVariableEnvironment actually have their dictionaries empty,
which contributes to the 98% of the collections created by
Benchmark 10 being left empty. This is not an isolated case.
The 17 applications under study are composed of 1,713
classes. We have 375 of these 1,713 classes that explicitly
define at least one constructor. We have also found that 144 of
these 375 classes explicitly instantiate at least one expandable
collection when being instantiated.

Expandable collections created in the constructor and
lazy evaluation of variable are a prominent cause of unused
collections.
Number of array creations. The standard collection library
creates a new array at each collection expansion. Since
instantiating a collection results in creating a new array, the
number of created arrays (NAC) subtracted to the number
of expansions (NCE) is equal to the number of collections
(NC). We have roughly the following relation NAC � NCE
= NC in Table 3. Some differences may be noticed due to
rehashing operations on hash-based collections (e.g., HashSet,
Dictionary) that may be triggered by an application. Such
effects are marginal and have a little impact on the overall
measurements, which is why we do not investigate such minor
variations further.
Collection expansions. From the 8.6M of collections (NC
column), only 0.56% of the collections are expanded 1,002,212
times during the execution of the benchmark (NCE column).
These expansions result in over 62Mb of copies between
these arrays (NCB column).
Unused memory. Summing up the memory consumed by all
the internal arrays yields over 342Mb. More than 296Mb
of these 342Mb are actually unused as a result of having
expandable collections filled only a little on average (i.e., the
size of the collection being much below its capacity).

4.2 Reducing the overhead incurred by collection
expansions

The measurements given in the previous section reveal that
the use of expandable collections may result in wasted CPU
and memory consumption. We use the observations made
above to reduce the overhead caused by expansions. We

propose three heuristics to reduce the overhead incurred by
expandable collections:
Creating the internal array storage on demand. Creating an
internal array only when necessary, i.e., at the first element
added. Since 76% of arrays are empty, lazily instantiating the
internal array will be beneficial.
Reusing arrays when expanding. Expanding a collection in-
volves creating an array larger than the previous one (usually
twice the initial size). After copying, the original array is
discarded by removing all references to it. The task to free
the memory is then left to the garbage collector.

Instead of letting the garbage collector discard old arrays,
arrays can be recycled: a collection expansion frees an array,
which itself may be used when another collection expands.
Setting an initial capacity. About 10% of expandable collec-
tions are created and filled in the same method. These 10%
of the collections have been created by 276 methods across
our benchmark. There are 105 of these 276 methods that use
the default construction with the default initial capacity.

Some of these methods may be refactored to create ex-
pandable collections with an adequate initial capacity.

We have conceived the OptimizedCollection library, a collec-
tion library for Pharo that exhibits better resource manage-
ment than the standard set of collection classes. Optimized-
Collection implements the design points made above. Sec-
tion 5, Section 6 and Section 7 elaborate on each of these
points.

5. Lazy Internal Array Creation
In Pharo, expandable collections have been implemented
under the assumption that a collection will be filled with
elements. This assumption unfortunately does not hold for the
usage scenarios we are facing in our benchmark. Less than a
third of the expandable collections are filled in practice. This
suggests that creating the internal array only when elements
are added is likely to be beneficial. We call this mechanism
lazy internal array creation.

This section describes the first design point, which is to
support lazy internal array creation.

5.1 Creating the array only when necessary
Introducing a lazy creation of the internal array is relatively
easy to implement. Instead of creating the internal storage in
the constructor, we defer its creation when adding an element
to the collection. For this, we need to remember the capacity
for the future creation of the array. Methods that add elements
to the collection have to be updated accordingly.

This simple-to-implement improvement leads to a signif-
icant reduction in memory consumption. Using the default
capacity, an empty ordered collection now occupies 20 bytes
only (in comparison with the 64 bytes without supporting
lazy internal array creation). After adding an element to the
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collection, the internal array is created, thus increasing the
size of the collection to 64 bytes.

We have implemented the lazy internal array creation as
described above in all the expandable collection classes. The
following section describes the impact on our case studies.

5.2 Lazy creation on the benchmark
Table 4 gives the metric values of our benchmark when using
the lazy internal array creation. Contrasting Table 3 (using
the standard collection library, i.e., without lazy internal array
creation) with Table 4 (lazy creation) shows a significant
reduction of unused memory and number of created internal
arrays. More specifically, we have:

• The number of array creation (NAC) has been significantly
reduced as one would expect. It went from 8,701,783
down to 2,437,083, representing a reduction of (8,605,147
� 2,437,083) / 8,605,147 = 71.67% of array creation.

• The number of unused bytes (NUB) has also been sig-
nificantly reduced. It went from 296Mb down to 82Mb,
representing a reduction of (296 � 82) / 296 = 72.29%.

Application 10 is producing a high number of expandable
collections that remains empty during the overall execution.
Using the original collection library, Application 10 created
1,438,380 internal arrays (NAC column in Table 3). Making
the collection library support the lazy internal array creation
makes this value goes to 68,098. A reduction of (1,438,380
� 68,132) / 1,438,380 = 95% of created arrays.

The lazy internal array creation has a slight positive impact
on the execution time of the benchmark. By lazily creating
the internal arrays, the execution time has been reduced by
2.38%.

6. Recycling Internal Arrays
A collection expansion is carried out with three sequential
steps (Section 2.1): (i) creation of a larger array; (ii) copying
the old array into the new one; (iii) replacing the collection’s
storage with the new array. The third step releases the unique
reference of the array storage, entitling the array to be
disposed by the garbage collector. This section is about
recycling unused internal arrays and measures the benefits of
recycling.

The general mechanism of recycling arrays along a pro-
gram execution is not new. It has already been shown that for
functional programming avoiding unnecessary array creation
by recycling those arrays is beneficial [17]. Recycling arrays
in a context of expandable collections is new and, as far as
we are aware of, it has not been investigated.

6.1 Recycling arrays on the benchmark

Principle. Instead of releasing the unique reference of an
array, the array is recycled by keeping it within a globally ac-
cessible pool. The array disposed after a collection expansion
is inserted in the pool. The first step of expansion has now to

check for a suitable array from the pool. If a suitable array is
found, the array is removed from the pool and used as internal
array storage in the expanded collection. If no array from the
pool can be used as internal array storage for a particular
collection expansion, a new array is created following the
standard behavior.

When an array is inserted into the pool, the array has to
be emptied so as to not keep unwanted references. Emptying
an array is done by filling it with the nil value.
Need for different strategies. Consider the following exam-
ple:

c1 := OrderedCollection new.
50 timesRepeat: [ c1 add: 42 ].
c2 := OrderedCollection new.
c3 := OrderedCollection new.

Filling c1 with 50 elements triggers three expansions,
which increases the capacity from 10 to 20, from 20 to 40
and from 40 to 80. Having c1 of a capacity of 80 is sufficient
to contain the 50 elements. The creation of the collection and
these expansions has created and released three arrays sized
10, 20, 40, respectively. These arrays are inserted in a pool of
arrays.

When c2 is created, an array of size 10 is needed for its
internal array storage. The pool of arrays contains an array
of size 10 (obtained from the expansion of c1). This array is
therefore removed from the pool and used for the creation of
c2.

Similarly, c3 requires an array of size 10. The pool contains
two arrays, of size 20 and size 40. The creation of the ordered
collection faces the following choice: either we instantiate
a new array of size 10, or we use one of the two available
arrays.

This simple example illustrates the possibility of having
different strategies for picking an array from the pool. We
propose three strategies and evaluate their impact over the
benchmark:

S1: requiredSize = size – Pick an array from the pool of
exactly the same size that is requested

S2: requiredSize <= size – Pick the first array with a size
equal to or greater than what is requested

S3: size / 0.9 < requiredSize < size * 1.1 – Pick an array which
has a size within a range of 20% of what is requested.

The effects of the different strategies on the unit-test bench-
mark is summarized in Table 1. We consider 8 metrics: NC
(number of created expandable collections), NCE (number
of collection expansions), NCB (number of copied bytes),
NAC (number of internal array creations), NAB (number of
allocated bytes), NUB (number of unused bytes), the number
of full garbage collections and the number of incremental
garbage collections.

S1 generates less unused array portions (NUB) than S2
and S3. S2 incurs less collection expansions than S1 and S3,
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metrics S1 S2 S3
NC 2,475,658 2,475,670 2,475,708
NCE 21,134 19,118 21,139
NCB 15,519,656 14,761,492 15,544,560
NAC 542,622 542,757 542,863
NAB 31,467,464 36,983,740 31,445,140
NUB 21,332,420 26,808,248 21,334,960
#full GC 40 44 40
#incr GC 14,442 14,423 20,314

Table 1: Effect of the different strategies for the unit test
benchmarks (best performance is indicated in bold)

which also result in fewer copied bytes (NCB). Oddly, the
number of incremental garbage collections is higher with S3.
Effect on the benchmark. Table 5 details the use of strat-
egy S1 on the benchmark. When supporting the lazy internal
array creation without recycling arrays (Table 4), the num-
ber of unused bytes has been reduced by (82, 927, 120 �
82, 752, 904)/82, 927, 120 = 0.2%. The reduction of the
number of created arrays is (2, 437, 083 � 2, 341, 191)/
2, 437, 083 = 4%. In all, 35,063 collections have been re-
cycled. More interestingly, the technique of reusing arrays
has reduced the number of allocated bytes by 14.6% (col-
umn NAB : (128, 678, 564�109, 840, 556)/128, 678, 564 =
14.6%).

After profiling the benchmark, the number of collections
left over in the pool is rather marginal. Only 216 collections
are in the pool, totaling less than 89kB.

Using the pool of arrays incurs a relatively small execution
time penalty. This represents an increase of 5.8% of execution
time when compared with the lazy array creation and an
increase of 2.8% with the original library.
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Figure 2: Distribution of recycled arrays

Recycled arrays. The techniques described in this section re-
cycle arrays of different sizes. Figure 2 shows the distribution
of size of recycled arrays for Strategy S1. The vertical axis
indicates the number of recycled arrays. The horizontal axis
lists the size of arrays that are effectively recycled.

Arrays that are the most recycled have a size of 5 and 10.
The standard Pharo library is designed as follows: 5 corre-
sponds to the minimum capacity of hash-based collections,
and 10 is the default size of non-hashed collections5. The
value 20 corresponds to the size of the internal array of a
default collection after expansion. An array of size 40 is
obtained after a second expansion.
Multi-threading. The pool of recycled internal array is glob-
ally accessible. Accesses to the pool need to be adequately
guarded by monitors to avoid concurrent addition or removal
from the pool. Several of the applications included in our
benchmark are multi-threaded. However, the execution sce-
narios we consider are not thread-intensive. Previous work
on pooling reusable collections [18] shows satisfactory per-
formance in a multi-threaded setting.

6.2 Variation in time execution
If we consider the global figures, recycling arrays has a
penalty of 3% of execution time in the average. However,
if we have a close look at each individual benchmark, we
see that most of the performance variation indicates that
our optimized collection library performs slightly faster than
the standard collection library (in addition to significantly
reduce the memory consumption, as detailed in the previous
sections).

bPP3

bN2

Figure 3: Impact of execution time of the optimized collection
library

Figure 3 shows the variation of execution time of the
performance benchmarks between the standard collection
library and our optimized library. All but two benchmarks are
slightly faster with our library. The execution of benchmarks
bN2 takes 6,738 seconds with the standard collection library
and takes 6,789 with our library. Since this represents a
variation of (6, 789 � 6, 738)/6, 738 = 0.7%, we consider
this variation as insignificant.

5 Note that we are not arguing whether 5 and 10 are the right default size.
Other languages including Scala and Ruby use a different default capacity
size. We are simply considering what the Pharo collection library offers to
us.
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Benchmark bPP3 goes from 6,330 seconds with the
standard library to 7,010 with our optimized library, which
represents an increase of 9.7%. The reason for this drop in
performance is not completely clear to us. This benchmark
parses a massing amount of textual data. Private discussion
with the authors of the considered application revealed the
cause of this variation may be due to the heavy use of short
methods on streams. Traditional sampling profiler does not
identify the cause of the performance drop, which indicates
us that its stems from particularities of the virtual machine
(for which its execution is not captured by the standard
Pharo profiler). These short methods have an execution time
close to the elementary operations performed by the virtual
machine to lookup the message in method cache. Although
we carefully designed our execution by emptying different
caches and multiply activating the garbage collection between
each execution, the reason of the performance drop may be
related to some particularities of the cache in the virtual
machine.

By excluding the benchmark bPP3, our library performs
3.01% faster than with the standard collection library. When
considering this outlier, our performance benchmark runs
7.9% slower.

7. Setting Initial Capacities
A complementary approach to improving the collection
library is to find optimization opportunities in the base
application (which makes use of the collection library).
Example. We have noticed recurrent situations for which an
expandable collection is filled in the same method that creates
the collection. The following method, extracted from a case
study, illustrates this:

ROView>>elementsToRender
| answer |
answer := OrderedCollection new.
self elementsToRenderDo: [ :el | answer add: el ].
ˆ answer

The method elementsToRender creates an instance of the
class OrderedCollection and stores it in a temporary vari-
able called answer. This collection is then filled by iterating
over a set of elements.

The method elementsToRender uses the default constructor
of the class OrderedCollection, which means a default capac-
ity to the collection is given. As described in the previous
sections, such a method is a possible source of wasted mem-
ory since a view may contain a high number of elements,
thus recreating the situation we have seen with the micro-
benchmark in Section 2.1.

By inspecting the definition of the method elementsTo-

RenderDo:, we have noticed that the number of elements to
render is known at that stage of the execution. The method
may be rewritten as:

ROView>>elementsToRender
”Return the number of elements that will be rendered”

| answer |
answer := OrderedCollection new: (self elements size).
self elementsToRenderDo: [ :el | answer add: el ].
ˆ answer

This new version of elementsToRender initializes the ordered
collection with an adequate capacity, meaning that no re-
source will be wasted due to the addition of elements in the
collection referenced by answer.
Profiling. The metrics NOSM and NSM identify meth-
ods that create a collection and fill it. The instance of
OrderedCollection created by the method elementsToRender is
counted by NSM since the collection is created and filled in
this method. The collection is also counted by NOSM in the
case that no other methods add or remove elements from the
result of elementsToRender.

We see that about 8% of the expandable collections are
immediately filled after their creation. We also notice that
slightly fewer collections are only filled in the same method in
which they were created. We are focusing on these collections
since they are likely easy to refactor without requiring a deep
knowledge about the application internals.

The NOSM and NSM metrics are computed by instrument-
ing all the constructors of expandable collection classes and
all the methods that add and remove elements.
Refactoring methods. The 204,680 collections that are filled
solely in the methods that have created them have been pro-
duced by exactly 276 methods. We have manually reviewed
each of these methods. We have refactored 105 of the 276
methods to insert a proper initialization of the expandable
collection. The remaining 171 methods were not obvious
to refactor. Since we did not author these applications and
had a relatively low knowledge about the internals of the
analyzed applications, we took a conservative approach: we
have refactored only simple and trivial cases for which we
had no doubt about the initial capacity, as in the example of
elementsToRender given above. We use unit-test to make sure
we did not break any invariant captured by the tests.
Impact on the benchmark. Table 6 details the profiling for
the benchmark by lazily creating internal arrays, reusing these
arrays and refactoring the applications. The reduction gain for
the number of allocated bytes is 0.11% (column NAB, which
goes from 109.840Mb to 109.713Mb). The amount of unused
space has been reduced by 0.12% (column NUB, which goes
from 82.752Mb down to 82.651Mb). No variation in terms
of execution time has been found.
Setting the capacity. We have run the modified version of
our benchmark with the original collection library, without
the recycling and the lazy array creation. Again, gains are
marginal. Only a reduction of 0.13% of the number of
allocated bytes has been measured.

We conclude that the obtained gain by allocating a proper
initial capacity is marginal.
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8. Other programming languages
This section reviews four programming languages (Java, C#,
Scala, and Ruby) by briefly describing how collections are
handled in these and how our result may be applied to them.
Java. The Java Collection Framework is composed of 10
generic interfaces implemented by 10 classes. In addition, the
framework offers 5 interfaces for concurrent collections. We
restrict our analysis to general purpose collections, however.

Classes describing collections are very similar to Pharo’s.
For example6, the class ArrayList uses an internal array to
store elements, as OrderedCollection does. The class HashSet

wraps an instance of HashMap. HashMap uses an array of Entry
elements, each entry being an association (key, value). The
implementation of HashSet is again very similar to Pharo’s
Dictionary, with a 0.75 threshold to trigger an expansion. The
class TreeMap does not have an equivalent in standard Pharo
and uses an array to store a collection’s elements.

In Pharo we did not consider the class LinkedList since
this class is only used by the runtime and not by user-defined
applications. However, in Java, LinkedList is used more and
other collection classes are built on it, e.g., LinkedHashSet and
LinkedHashMap.
C#. ArrayList is similar to its Java sibling and Pharo’s
OrderedCollection. The C# version of ArrayList initializes
its internal array with an empty array, resulting in an im-
plementation equivalent to the lazy internal array creation
(Section 5).

Hashtable uses an internal array which is created with
the proper capacity when the class is instantiated. Hashtable
does not use an empty array as ArrayList does. The class
Dictionary and Queue do not lazy initialize its internal array
storage. Similarly to ArrayList, Stack initializes its internal
array storage with an empty list, thus triggering an expansion
at the first element addition.
Scala. Instead of simply wrapping Java collections as many
languages do when running on top of the Java Virtual Ma-
chine, Scala offers a rich trait-based collection library that
supports statically checked immutability [19] (which Java
does not support). The design of expandable collections in
Scala is similar to Java. ArrayBuffer which is the equivalent
of Java’s ArrayList creates an empty array of a default size
16.

ArrayBuffer extends ResizeableArray7 utility class used by
several other collections. The private array field in that class
is called array and the logic of manipulating it is the same as
with Java’s ArrayList.
Ruby. Oddly, Ruby provides the complete implementation of
array, the most used expandable collection in Ruby, in the
virtual machine. All the arithmetic operations, copy, element

6 The source code of ArrayList is visible online on
http://bit.ly/ArrayListOpenJDK6
7 https://github.com/scala/scala/blob/ master/src/library/scala/collection/-
mutable/ResizableArray.scala

addition and removing are carried out by the virtual machine.
Ruby associates to each empty collection an array of size 16.
Applicability of our results. In our experiment we have iden-
tified a significant amount of empty collections. Similar be-
havior has been found in other situations. For example, when
conducting the case studies in Java with Chameleon [6], a
high proportion of empty collections have also been identi-
fied.

The collection framework of Java8, C#, Scala, and Ruby
behave similarly to Pharo, except for the C# version of
ArrayList and Stack. We therefore expect our improvement
on the Pharo library to have a positive and significant impact
on these collection libraries. As future work, we plan to verify
assumption by modifying the standard library and running
established benchmarks (e.g., DaCapo [13]).

9. Related Work
Patterns of memory inefficiency. A set of recurrent memory
patterns have been identified by Chis et al. [12]. Overheads in
Java come from object headers, null pointers, and collections.
Three of their 11 patterns (P1, P3, P4) are about unused por-
tions internal arrays of collections. The model ContainerOr-
Contained has been proposed to detect occurrences of these
patterns.

We have proposed the lazy internal array creation tech-
nique to efficiently address pattern P1 - empty collections.
Addressing pattern P3 - small collections is unfortunately
not easy. Our collection profiler identifies the provenance of
collections having an unnecessary large capacity. However
refactoring the base application to properly set the capacity
does not result in a significant impact (only a reduction of
0.13% of allocated bytes has been measured). As future work,
we plan to verify whether some patterns, depending on the
behavior of the application, may be identified (e.g., a method
that always produce collections of a same size).
Storage strategies. Use of primitive types in Python may trig-
ger a large number of boxing and unboxing operations. Stor-
age strategies [20] significantly reduce the memory footprint
of homogeneous collections. Each collection has a storage
strategy that is dynamically chosen upon element additions.
Homogeneous collections use a dedicated storage to optimize
the resources consumed by the storage.

Storage strategies may be considered as a generalization of
the lazy internal array creation described above. Our approach
focuses on reducing the memory footprint of expandable
collections, which is different, but complementary to the
approach of Bolz, Diekmann and Tratt which focuses on the
representation in memory of homogenous collections.
Discontiguous arrays. Traditional implementation of mem-
ory model uses continuous storage. Associating a continuous

8 A private discussion with some developers at Oracle indicates that an
updated version of the Collection library in JDK 7 will soon support lazy
array creation.
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memory portion to a collection is known to be a source of
wasted space which leads to unpredictable performance due
to garbage collection pauses [21]. Discontiguous arrays is a
technique that consists in dividing arrays into indexed mem-
ory chunks [10, 11, 22, 23]. Such techniques are particularly
adequate for real-time and embedded systems.

Implementing these techniques in an existing virtual ma-
chine usually comes at a heavy cost. In particular, the garbage
collector has to be aware of discontiguous arrays. A garbage
collector is usually a complex and highly optimized piece of
code, which makes it it very delicate to modify. Bugs that may
be inadvertently introduced when modifying it may result in
severe and hard-to-trace crashes.

Our results show that a significant improvement may be
carried out without any low-level modification in the virtual
machine or in the executing platform. Many of our experi-
ments about memory profiling in Pharo have been carried
out having simultaneously multiple different versions of the
collection library. Nevertheless, research results about discon-
tinuous arrays, in particular Z-rays [11], may be beneficial
to expandable collections. In the future, we plan to work on
this.
Dynamic adaptation. Choosing the most appropriate col-
lection implementation is not simple. The two collections
ArrayList and HashSet are often chosen because their behav-
ior is well known, which makes them popular. Improperly
chosen collection implementation may lead to unnecessary
resource consumption. Xu [5] proposes an optimization tech-
nique to dynamically adapt a collection into the one that fits
best according to its usage (e.g., replacing a LinkedList with
an ArrayList).

Xu’s approach is similar to the storage strategies men-
tioned above, which makes it complementary to our approach.
Adaptive selection of collections. In the same line as dy-
namic adaption, Shacham et al. [6] describe a profiler specific
to collections which outputs a list of appropriate collection
implementation. The correction can be either made automati-
cally, or presented to the programmer for correction. A small
domain-specific language is described to define rules to char-
acterize use of collections.
Recycling collections. The idea of recycling some collections
classes has been investigated in the past. For example, func-
tional languages create a new copy, at least in principle, at
each element addition or removal. Avoiding such copies has
been the topic of numerous research work [17, 24].

Recycling collections when possible is known to be ef-
fective [25]. For example, Java Performance Tuning [18],
Chapter 4, Page 79, mentions “Most container objects (e.g.,
Vectors, Hashtables) can be reused rather than created and
thrown away.” However, no evidence about the gain is given.
In the case of Pharo, recycling internal arrays of expandable
collections reduces the number of allocated bytes by 14.6%.
This chapter also argues that recycling collections is effec-
tive in a multi-threaded setting. Although our benchmarks

includes multi-threaded applications, our execution did not
make an heavy use of threads. This book chapter supports the
idea that programmers should make their collection reusable,
whenever is possible. Our work embeds this notion of recy-
cling arrays within the collection library itself.

The notion of redundant computation within loops has
been the topic of some recent work [26–28]. Efficient model
for reusing objects at loop iteration are provided. For example,
reusing collections within loop leads to a “20-40% reduction
in object churn” and “the execution time improvements
range between 6-20%.” Object churn refers to the excessive
generation of temporary objects. Our approach essentially
embeds the improvement within the collection library, which
has the advantage to not impact the programmer’s habits.
However, our performance improvement are lesser.
Adaptive collection. The Clojure programming language9

offers persistent data structures. Such data structures have
their implementation based on the usage of the internal array
storage. For example, a PersistentArrayMap is promoted to a
PersistentHashMap once the collection exceeds 16 entries.

10. Conclusion and Future Work
Expandable collections are an important piece of the run-
time. Although intensively used, expandable collections are a
potential source of wasted memory space and CPU consump-
tion.

Improving the performance of expandable collections
went through three different steps, as described in Section 5,
Section 6 and Section 7. We have defined a total of 32
executions of 17 different applications, which generate nearly
9M of expandable collections. The execution blueprint of
these collections obtained with the standard collection library
is given in Table 3. We have developed OptimizedCollection,
a collection library that supports lazy array creation and array
recycling. The execution profile of the benchmark is given
in Table 5. The positive effect of our collection is given by
contrasting Table 5 against Table 3. OptimizedCollection has:

• reduced the number of created intermediary internal array
storage by (8,701,783 � 2,341,191) / 8,701,783 = 73.09%
(column NAC)

• reduced the number of allocated bytes by (342,818,892 �
109,840,556) / 342,818,892 = 67.95% (column NAB)

• reduced the number of unused bytes by (296,863,696 �
82,752,904) / 296,863,696 = 72.12% (column NUB)

Recycling arrays incur a time penalty on the execution.
Our benchmark runs 3% faster for all but one performance
benchmark.
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Dincklage, B. Wiedermann, The dacapo benchmarks: java
benchmarking development and analysis, in: Proceedings of
OOPSLA ’06, pp. 169–190.

[14] R. C. Martin, Agile Software Development. Principles, Pat-
terns, and Practices, Prentice-Hall, 2002.

[15] T. Mytkowicz, A. Diwan, M. Hauswirth, P. F. Sweeney, Pro-
ducing wrong data without doing anything obviously wrong!,
in: Proceeding of the 14th international conference on Archi-
tectural support for programming languages and operating
systems, ASPLOS ’09, ACM, New York, NY, USA, 2009, pp.
265–276.

[16] M. Dias, M. M. Peck, S. Ducasse, G. Arévalo, Fuel: a fast
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bench. NC NNEC NEC NCE NCB NAC NOSM NSM NAB NUB
1 643,603 151,665(23%) 491,938(76%) 2,636 35,940 646,239 112,308(17%) 112,439(17%) 18,819,920 17,907,204
2 13 12(92%) 1(7%) 0 0 13 1(7%) 1(7%) 468 392
3 78,976 34,912(44%) 44,064(55%) 322 2,272 79,298 10,604(13%) 10,681(13%) 2,374,464 2,213,384
4 1,690 512(30%) 1,178(69%) 30 1,720 1,720 245(14%) 245(14%) 65,760 55,420
5 3,191 2,009(62%) 1,182(37%) 30 1,208 3,193 200(6%) 251(7%) 77,808 67,724
6 96 44(45%) 52(54%) 0 0 96 40(41%) 40(41%) 3,740 3,464
7 612 218(35%) 394(64%) 614 2,257,960 1,231 48(7%) 48(7%) 4,657,696 837,948
8 2 0(0%) 2(100%) 0 0 2 0(0%) 0(0%) 40 40
9 158,589 58,371(36%) 100,218(63%) 5,663 280,876 164,252 57,644(36%) 57,728(36%) 6,833,532 5,534,280
10 1,432,306 14,891(1%) 1,417,415(98%) 6,074 12,258,424 1,438,380 8,248(0%) 8,344(0%) 46,958,632 34,241,204
11 6,839 2,058(30%) 4,781(69%) 1,280 78,712 6,967 471(6%) 480(7%) 291,052 256,852
12 8,363 3,530(42%) 4,833(57%) 1,103 47,852 9,466 73(0%) 73(0%) 279,236 165,460
13 108,571 57,590(53%) 50,981(46%) 1,739 369,336 109,990 8,151(7%) 8,810(8%) 5,778,016 4,845,764
14 10,305 586(5%) 9,719(94%) 145 14,044 10,448 82(0%) 110(1%) 443,828 420,352
15 20,815 14,886(71%) 5,929(28%) 255 125,900 21,070 5,736(27%) 5,740(27%) 2,692,404 1,984,240
16 766 172(22%) 594(77%) 17 496 783 123(16%) 123(16%) 126,368 122,532
17 1,203 880(73%) 323(26%) 1,512 48,384 2,715 764(63%) 764(63%) 127,356 35,988

total 2,475,940 342,336(13%) 2,133,604(86%) 21,420 15,523,124 2,495,863 204,738(8%) 205,877(8%) 89,530,320 68,692,248
bAST1 210,000 38,000(18%) 172,000(81%) 0 0 210,000 38,000(18%) 38,000(18%) 6,752,000 6,468,000
bAST2 179,000 47,000(26%) 132,000(73%) 4,000 24,000 183,000 41,000(22%) 41,000(22%) 5,928,000 5,580,000
bAST3 428,550 103,830(24%) 324,720(75%) 2,670 28,200 431,220 87,570(20%) 87,570(20%) 13,795,440 13,212,720

bN1 150 0(0%) 150(100%) 0 0 150 0(0%) 0(0%) 3,000 3,000
bN2 180 150(83%) 30(16%) 60 9,000 240 120(66%) 120(66%) 22,440 7,680
bN3 240 240(100%) 0(0%) 60 9,000 300 180(75%) 180(75%) 22,680 7,560
bPP1 90,600 46,200(50%) 44,400(49%) 5,600 436,800 96,200 46,200(50%) 46,200(50%) 4,214,400 3,033,600
bPP2 78,000 44,800(57%) 33,200(42%) 6,600 476,800 84,600 44,800(57%) 44,800(57%) 3,790,400 2,571,200
bPP3 546,710 398,420(72%) 148,290(27%) 52,860 6,475,120 599,570 398,420(72%) 398,420(72%) 29,103,720 17,192,120
bReg1 1,000 200(20%) 800(80%) 0 0 1,000 100(10%) 100(10%) 34,400 33,600
bReg2 2,162,830 427,970(19%) 1,734,860(80%) 427,950 17,118,080 2,162,860 10(0%) 10(0%) 86,513,920 84,799,800
bReg3 1,949,950 476,010(24%) 1,473,940(75%) 476,020 19,042,680 1,950,010 10(0%) 10(0%) 78,001,720 76,093,720
bR1 400,011 7(0%) 400,004(99%) 46 2,631,600 400,055 0(0%) 3(0%) 17,263,480 13,023,236
bR2 2,530 1,583(62%) 947(37%) 117 15,608 2,642 289(11%) 299(11%) 141,056 99,404
bR3 79,456 53,259(67%) 26,197(32%) 4,809 686,196 84,073 13,365(16%) 13,454(16%) 7,701,916 6,045,808
total 6,129,207 1,637,669(26%) 4,491,538(73%) 980,792 46,953,084 6,205,920 670,064(10%) 670,166(10%) 253,288,572 228,171,448
Total 8,605,147 1,980,005(23%) 6,625,142(76%) 1,002,212 62,476,208 8,701,783 874,802(10%) 876,043(10%) 342,818,892 296,863,696

Table 3: Original benchmark (baseline for all the other measurements)

bench. NC NNEC NEC NCE NCB NAC NOSM NSM NAB NUB
1 643,603 151,665(23%) 491,938(76%) 2,636 35,940 229,379 112,308(17%) 112,439(17%) 3,956,792 3,044,076
2 13 12(92%) 1(7%) 0 0 13 1(7%) 1(7%) 468 392
3 79,035 34,970(44%) 44,065(55%) 45 2,272 44,294 10,612(13%) 10,689(13%) 1,397,668 1,236,260
4 1,690 512(30%) 1,178(69%) 30 1,720 905 245(14%) 245(14%) 33,160 22,820
5 3,551 2,009(56%) 1,542(43%) 30 1,208 2,685 200(5%) 251(7%) 65,208 55,124
6 96 44(45%) 52(54%) 0 0 91 40(41%) 40(41%) 3,560 3,284
7 644 218(33%) 426(66%) 614 2,257,960 927 48(7%) 48(7%) 4,509,216 689,468
8 2 0(0%) 2(100%) 0 0 0 0(0%) 0(0%) 0 0
9 158,395 58,331(36%) 100,064(63%) 5,663 280,876 123,703 57,637(36%) 57,718(36%) 5,220,152 3,921,204
10 1,432,306 14,891(1%) 1,417,415(98%) 6,074 12,258,424 68,132 8,248(0%) 8,344(0%) 19,547,672 6,830,248
11 6,839 2,058(30%) 4,781(69%) 1,280 78,712 2,186 471(6%) 480(7%) 109,212 75,012
12 7,870 3,472(44%) 4,398(55%) 1,094 44,384 5,253 20(0%) 20(0%) 194,732 84,716
13 108,571 57,590(53%) 50,981(46%) 1,739 369,336 62,510 8,151(7%) 8,810(8%) 4,218,656 3,286,404
14 10,305 586(5%) 9,719(94%) 145 14,044 963 82(0%) 110(1%) 136,008 112,532
15 20,815 14,886(71%) 5,929(28%) 255 125,900 18,489 5,736(27%) 5,740(27%) 2,640,784 1,932,632
16 766 172(22%) 594(77%) 17 496 221 123(16%) 123(16%) 14,288 10,452
17 1,203 880(73%) 323(26%) 1,512 48,384 2,392 764(63%) 764(63%) 120,856 29,488

total 2,475,704 342,296(13%) 2,133,408(86%) 21,134 15,519,656 562,143 204,686(8%) 205,822(8%) 42,168,432 21,334,112
bAST1 210,000 38,000(18%) 172,000(81%) 0 0 47,000 38,000(18%) 38,000(18%) 820,000 536,000
bAST2 179,000 47,000(26%) 132,000(73%) 4,000 24,000 53,000 41,000(22%) 41,000(22%) 1,016,000 668,000
bAST3 428,550 103,830(24%) 324,720(75%) 2,670 28,200 113,040 87,570(20%) 87,570(20%) 2,389,680 1,806,960

bN1 150 0(0%) 150(100%) 0 0 0 0(0%) 0(0%) 0 0
bN2 180 150(83%) 30(16%) 60 9,000 210 120(66%) 120(66%) 21,840 7,080
bN3 240 240(100%) 0(0%) 60 9,000 300 180(75%) 180(75%) 22,680 7,560
bPP1 90,600 46,200(50%) 44,400(49%) 5,600 436,800 78,000 46,200(50%) 46,200(50%) 3,490,400 2,309,600
bPP2 78,000 44,800(57%) 33,200(42%) 6,600 476,800 70,200 44,800(57%) 44,800(57%) 3,218,400 1,999,200
bPP3 546,710 398,420(72%) 148,290(27%) 52,860 6,475,120 543,770 398,420(72%) 398,420(72%) 26,952,320 15,040,720
bReg1 1,000 200(20%) 800(80%) 0 0 200 100(10%) 100(10%) 7,200 6,400
bReg2 2,162,830 427,970(19%) 1,734,860(80%) 427,950 17,118,080 428,000 10(0%) 10(0%) 17,120,000 15,405,880
bReg3 1,949,950 476,010(24%) 1,473,940(75%) 476,020 19,042,680 476,070 10(0%) 10(0%) 19,044,600 17,136,600
bR1 400,011 7(0%) 400,004(99%) 46 2,631,600 52 0(0%) 3(0%) 5,263,360 1,223,116
bR2 2,422 1,583(65%) 839(34%) 117 15,608 1,698 289(11%) 299(12%) 109,356 67,704
bR3 78,145 53,259(68%) 24,886(31%) 4,809 686,196 63,400 13,365(17%) 13,454(17%) 7,034,296 5,378,188
total 6,127,788 1,637,669(26%) 4,490,119(73%) 980,792 46,953,084 1,874,940 670,064(10%) 670,166(10%) 86,510,132 61,393,008
Total 8,603,492 1,979,965(23%) 6,623,527(76%) 1,001,926 62,472,740 2,437,083 874,750(10%) 875,988(10%) 128,678,564 82,727,120

Table 4: Lazy internal array creation
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bench. NC NNEC NEC NCE NCB NAC NOSM NSM NAB NUB
1 643,603 151,665(23%) 491,938(76%) 2,636 35,940 226,736 112,308(17%) 112,439(17%) 3,921,136 3,044,076
2 13 12(92%) 1(7%) 0 0 13 1(7%) 1(7%) 468 392
3 78,977 34,912(44%) 44,065(55%) 45 2,272 44,193 10,604(13%) 10,681(13%) 1,393,396 1,234,432
4 1,690 512(30%) 1,178(69%) 30 1,720 873 245(14%) 245(14%) 31,200 22,820
5 3,551 2,009(56%) 1,542(43%) 30 1,208 2,683 200(5%) 251(7%) 65,168 55,124
6 96 44(45%) 52(54%) 0 0 91 40(41%) 40(41%) 3,560 3,284
7 644 218(33%) 426(66%) 614 2,257,960 235 48(7%) 48(7%) 2,372,616 689,468
8 2 0(0%) 2(100%) 0 0 0 0(0%) 0(0%) 0 0
9 158,399 58,333(36%) 100,066(63%) 5,663 280,876 118,044 57,639(36%) 57,720(36%) 4,938,224 3,921,356
10 1,432,306 14,891(1%) 1,417,415(98%) 6,074 12,258,424 62,065 8,248(0%) 8,344(0%) 11,877,480 6,830,244
11 6,839 2,058(30%) 4,781(69%) 1,280 78,712 2,056 471(6%) 480(7%) 91,804 75,012
12 7,870 3,472(44%) 4,398(55%) 1,094 44,384 4,163 20(0%) 20(0%) 144,144 84,716
13 108,571 57,590(53%) 50,981(46%) 1,739 369,336 61,326 8,151(7%) 8,810(8%) 3,907,184 3,286,404
14 10,305 586(5%) 9,719(94%) 145 14,044 817 82(0%) 110(1%) 119,512 112,532
15 20,815 14,886(71%) 5,929(28%) 255 125,900 18,233 5,736(27%) 5,740(27%) 2,514,840 1,932,620
16 766 172(22%) 594(77%) 17 496 203 123(16%) 123(16%) 13,700 10,452
17 1,203 880(73%) 323(26%) 1,512 48,384 882 764(63%) 764(63%) 72,536 29,488

total 2,475,650 342,240(13%) 2,133,410(86%) 21,134 15,519,656 542,613 204,680(8%) 205,816(8%) 31,466,968 21,332,420
bAST1 210,000 38,000(18%) 172,000(81%) 0 0 47,000 38,000(18%) 38,000(18%) 820,000 536,000
bAST2 179,000 47,000(26%) 132,000(73%) 4,000 24,000 49,002 41,000(22%) 41,000(22%) 992,012 668,000
bAST3 428,550 103,830(24%) 324,720(75%) 2,670 28,200 110,370 87,570(20%) 87,570(20%) 2,361,480 1,806,960

bN1 150 0(0%) 150(100%) 0 0 0 0(0%) 0(0%) 0 0
bN2 180 150(83%) 30(16%) 60 9,000 153 120(66%) 120(66%) 13,400 7,080
bN3 240 240(100%) 0(0%) 60 9,000 243 180(75%) 180(75%) 14,240 7,560
bPP1 91,000 46,400(50%) 44,600(49%) 5,600 437,600 72,603 46,400(50%) 46,400(50%) 3,058,196 2,312,800
bPP2 78,000 44,800(57%) 33,200(42%) 6,600 476,800 63,604 44,800(57%) 44,800(57%) 2,743,088 2,000,000
bPP3 546,710 398,420(72%) 148,290(27%) 52,170 6,449,480 490,915 398,420(72%) 398,420(72%) 20,488,808 15,051,560
bReg1 1,000 200(20%) 800(80%) 0 0 200 100(10%) 100(10%) 7,200 6,400
bReg2 2,162,830 427,970(19%) 1,734,860(80%) 427,950 17,118,080 427,970 10(0%) 10(0%) 17,119,200 15,405,880
bReg3 1,949,950 476,010(24%) 1,473,940(75%) 476,020 19,042,720 476,011 10(0%) 10(0%) 19,042,492 17,136,640
bR1 400,011 7(0%) 400,004(99%) 46 2,631,600 38 0(0%) 3(0%) 5,243,040 1,023,116
bR2 2,422 1,583(65%) 839(34%) 117 15,608 1,597 289(11%) 299(12%) 94,656 67,712
bR3 78,145 53,259(68%) 24,886(31%) 4,872 699,036 58,872 13,365(17%) 13,454(17%) 6,375,776 5,390,776
total 6,128,188 1,637,869(26%) 4,490,319(73%) 980,165 46,941,124 1,798,578 670,264(10%) 670,366(10%) 78,373,588 61,420,484
Total 8,603,838 1,980,109(13%) 6,623,729(86%) 1,001,299 62,460,780 2,341,191 874,944(8%) 876,182(8%) 109,840,556 82,752,904

Table 5: Lazy internal array creation + reuse of array

bench. NC NNEC NEC NCE NCB NAC NOSM NSM NAB NUB
1 643,626 151,687(23%) 491,939(76%) 2,648 35,956 226,964 112,329(17%) 112,460(17%) 3,906,608 3,029,456
2 13 12(92%) 1(7%) 0 0 13 1(7%) 1(7%) 468 392
3 79,043 34,974(44%) 44,069(55%) 65 2,108 44,259 10,616(13%) 10,693(13%) 1,384,428 1,225,288
4 1,691 513(30%) 1,178(69%) 30 1,760 874 246(14%) 246(14%) 30,952 22,532
5 3,551 2,009(56%) 1,542(43%) 28 1,120 2,683 200(5%) 251(7%) 65,352 55,308
6 96 44(45%) 52(54%) 0 0 91 40(41%) 40(41%) 3,560 3,284
7 644 218(33%) 426(66%) 614 2,257,960 235 48(7%) 48(7%) 2,372,608 689,492
8 2 0(0%) 2(100%) 0 0 0 0(0%) 0(0%) 0 0
9 158,399 58,333(36%) 100,066(63%) 5,651 280,636 118,043 57,639(36%) 57,720(36%) 4,938,340 3,921,516
10 1,432,306 14,891(1%) 1,417,415(98%) 6,069 12,280,124 62,070 8,248(0%) 8,344(0%) 11,852,428 6,828,504
11 6,839 2,058(30%) 4,781(69%) 1,280 78,760 2,055 471(6%) 480(7%) 91,812 75,064
12 7,870 3,472(44%) 4,398(55%) 1,095 46,236 4,163 20(0%) 20(0%) 145,360 86,528
13 108,571 57,589(53%) 50,982(46%) 1,683 367,164 61,330 8,150(7%) 8,809(8%) 3,865,908 3,245,964
14 10,305 586(5%) 9,719(94%) 145 14,044 819 82(0%) 110(1%) 120,872 112,660
15 20,815 14,886(71%) 5,929(28%) 255 125,900 18,233 5,736(27%) 5,740(27%) 2,514,084 1,932,656
16 766 172(22%) 594(77%) 14 376 202 123(16%) 123(16%) 12,488 9,428
17 1,203 880(73%) 323(26%) 0 0 880 764(63%) 764(63%) 72,472 29,488

total 2,475,740 342,324(13%) 2,133,416(86%) 19,577 15,492,144 542,914 204,713(8%) 205,849(8%) 31,377,740 21,267,560
bAST1 210,000 38,000(18%) 172,000(81%) 0 0 47,000 38,000(18%) 38,000(18%) 820,000 536,000
bAST2 179,000 47,000(26%) 132,000(73%) 4,000 24,000 49,002 41,000(22%) 41,000(22%) 992,012 668,000
bAST3 428,550 103,830(24%) 324,720(75%) 2,670 28,200 110,370 87,570(20%) 87,570(20%) 2,329,080 1,774,560

bN1 150 0(0%) 150(100%) 0 0 0 0(0%) 0(0%) 0 0
bN2 180 150(83%) 30(16%) 60 9,000 154 120(66%) 120(66%) 11,280 4,920
bN3 240 240(100%) 0(0%) 60 9,000 244 180(75%) 180(75%) 12,120 5,400
bPP1 90,600 46,200(50%) 44,400(49%) 5,600 437,600 72,403 46,200(50%) 46,200(50%) 3,057,396 2,312,800
bPP2 78,000 44,800(57%) 33,200(42%) 6,600 476,800 63,604 44,800(57%) 44,800(57%) 2,743,088 2,000,000
bPP3 546,710 398,420(72%) 148,290(27%) 52,170 6,449,480 490,915 398,420(72%) 398,420(72%) 20,488,808 15,051,560
bReg1 1,000 200(20%) 800(80%) 0 0 200 100(10%) 100(10%) 7,200 6,400
bReg2 2,162,830 427,970(19%) 1,734,860(80%) 427,950 17,118,080 427,970 10(0%) 10(0%) 17,119,200 15,405,880
bReg3 1,949,950 476,010(24%) 1,473,940(75%) 476,020 19,042,720 476,011 10(0%) 10(0%) 19,042,492 17,136,640
bR1 400,011 7(0%) 400,004(99%) 46 2,631,600 38 0(0%) 3(0%) 5,243,040 1,023,116
bR2 2,422 1,583(65%) 839(34%) 117 15,608 1,597 289(11%) 299(12%) 94,616 67,672
bR3 78,145 53,259(68%) 24,886(31%) 4,872 699,036 58,872 13,365(17%) 13,454(17%) 6,375,736 5,390,736
total 6,127,788 1,637,669(26%) 4,490,119(73%) 980,165 46,941,124 1,798,380 670,064(10%) 670,166(10%) 78,336,068 61,383,684
Total 8,603,528 1,979,993(23%) 6,623,535(76%) 999,742 62,433,268 2,341,294 874,777(10%) 876,015(10%) 109,713,808 82,651,244

Table 6: Lazy internal array creation + reuse of array + code refactoring
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Abstract
We report on a revival of Smalltalk-78 in JavaScript that runs
in any web browser. Smalltalk-78 was a port of Smalltalk-76
to the NoteTaker, a portable computer based on the Intel 8086
processor. This same interpreter design and snapshot is the ancestor
of Smalltalk-80 and Squeak systems of today. We describe our
conversion to a completely different object memory with essentially
no visible changes in the language or system, as well as our
support of Smalltalk-78’s linearized contexts that used the 8086
stack directly. We report how the Lively Web development system
facilitated tooling for the project, as well as the integration of the
final result with file access over the Internet. We report several
performance results and describe how the resurrected system and
IDE was actually used to build an entire slide composition and
presentation system used to produce a present-day illustrated talk.

1. Background
Smalltalk-76 was the first modern Smalltalk, combining a compi-
lable keyword message syntax with a compact and efficient byte
code interpreter (Ingalls 1978). From its precursor (Smalltalk-74) it
inherited an object-oriented virtual memory (OOZE) which enabled
it to address over a megabyte of objects with sixteen-bit pointers,
and a library of line-drawing, bitmap manipulation and text display
routines.

At roughly the same time, Intel was developing its 8086 micro-
processor to be introduced in 1978, and the Xerox Smalltalk team
(see acknowledgements) determined to build a portable computer
dubbed “NoteTaker” (Figure 1) around that chip, running Smalltalk
as its operating system and application environment.

The challenge of porting Smalltalk-76 to a microprocessor with
only 256k bytes of memory led to several more innovations that
shaped the future of Smalltalk. The need for efficiency led to an
experimental mapping of Smalltalk contexts directly onto the 8086
stack. The overwhelming task of rewriting all the graphics routines
from ALTO assembly code to 8086 assembly code motivated a
rewrite of all the Smalltalk graphics to use only the single BitBlt
primitive operation. By this time the Xerox team had learned enough
about how to build an effective IDE, so this port was also an excuse
to pare down the system to a fairly lean self-supporting kernel of
100 classes and 2000 methods in an image of 200k bytes.

The NoteTaker Smalltalk, also referred to as Smalltalk-78 (Kras-
ner 1983) is thus a manifestation of the original Smalltalk-76
language and interpreter architecture, together with the hallmark
Smalltalk IDE and the earliest BitBlt-based graphic system. Be-
cause of its freedom from the complex OOZE virtual memory and
the equally complex support for lines, text, and image manipula-

Figure 1. NoteTaker hardware

tion in the original Smalltalk-76 system, we determined to revive
Smalltalk-78 as a living artifact accessible in any browser.

While only a few NoteTakers were ever built, we are fortunate
to have one Smalltalk-78 memory image preserved from that day. It
was created by cloning (parts of) the running Smalltalk-76 system.
Since this represents a fairly lean snapshot of the original Smalltalk-
76 system, we thought it would be a particularly interesting target for
reimplementation. A similar cloning process was used to produce
an image to run on Xerox’s high-performance Dorado machine,
and that in turn was stepwise morphed into the publicly released
Smalltalk-80 system.1

2. Notable features of Smalltalk-78
The constraints on NoteTaker deployment led to a particularly inter-
esting point in the evolution of Smalltalk that can be summarized
by the following relationship to its parent:

Language and bytecode architecture Unchanged from the origi-
nal Smalltalk-76 design (Ingalls 1978).

Dynamic execution model Retains full context semantics, but with
a linear stack matched to 8086.

Object memory Complex OOZE virtual memory replaced by sim-
ple object table model.

1 Remnants of this duality can still be seen in the NoteTaker image: lower-
level code in various places tests whether it is running on the NoteTaker or
Dorado.



Graphics system Large library of assembly code for text, lines, etc.
replaced by BitBlt alone.

Programming environment Includes full rich text editor, com-
piler, paned browser and debugger.

Source code Decompilation used in place of remote source code
file.

System size VM reduced from approx 16k in Smalltalk-76 to 6k
bytes of 8086 code. Entire IDE was 100 classes with 2000
methods, totalling 200k bytes

3. Revival process
To revive Smalltalk-78 and make it usable in a browser, we deter-
mined to leverage the similar SqueakJS project that runs Squeak
Smalltalk using n JavaScript in a browser (Freudenberg 2013). We
would reuse the innovative object model as is, modify the interpreter
and BitBlt for Smalltalk-78 differences, and completely rewrite the
context mechanism to follow Smalltalk-78’s linear stack model. The
SqueakJS browser port was developed in the Lively Web develop-
ment environment2, and we took advantage of this support in our
revival of Smalltalk-78 as well. Figure 2 shows the initial Notetaker
screen.

3.1 The initial snapshot
The Smalltalk-78 snapshot we used was created from a running
Smalltalk-76 system. To fit within the NoteTaker hardware, many
features were removed from that system.

The snapshot came in two files: an object table dump (30,976
Bytes) and an object memory snapshot (172,592 Bytes). These
files were not a direct snapshot, but the result of a conversion
program in a running Smalltalk-76 system. These snapshot files
were added to the Lively interpreter object as literal arrays. The
object table is a sequence of 4-byte entries. Each entry encodes
the data address, along with some other bits including a reference
count. Our implementation ignores the reference count since it uses
a generational garbage collector.

The object data space is a sequence of 2-byte words. One header
word encodes the class oop in the upper 10 bits, and the instance
size in the lower 6 bits (class oops always had the lower 6 bits equal
to zero in OOZE). If the size field is zero, then there is a word before
the class with a 16-bit length. The size field is the object size in
bytes, including the class (and size), so a String of length 1 has size
= 3, and a Point would have size = 6.

The format of classes is (quoting from the system itself . . . )

• title “<String> for identification, printing”
• myinstvars “<String> partnames for compiling, printing”
• instsize “<Integer> for storage management”
• messagedict “<MessageDict> for communication, compiling”
• classvars “<Dictionary/nil> compiler checks here”
• superclass “<Class> for execution of inherited behavior”
• environment “<Vector of SymbolTables> for external refs”

The instsize is an integer (i.e. low bit = 1) with the following
interpretation:

• 0x8000 – fields are oops, else not
• 0x4000 – fields are words, else bytes
• 0x2000 – instances are variable length
• 0x0FFE – instance size in words including class

2 Seehttp://lively-web.org/

Figure 2. The initial NoteTaker screen.3

Thus Point has instsize = 0x8006 (class + 2 pointers) and Float
has instsize = 0x4008 (class + 3 words). Floats on the NoteTaker
use a non-standard format: 15 bits exponent in two’s complement, 1
bit sign, and 32 bits mantissa. These floats are converted to standard
IEEE 754 doubles (1 sign bit, 11 bits biased exponent, 53 bits
mantissa) by bitshifts, resulting in native JavaScript numbers.

We discovered that some objects in the snapshot did not have
the right class set. Specifically, we noticed that e.g. Array new: 5
failed with an inexplicable error. It turned out that the Array class
was supposed to be an instance of VariableLengthClass which imple-
ments new:. But in the snapshot, it was an instance of Class. This
problem did not manifest in the original NoteTaker VM because it
intercepted new: as a primitive without actually looking it up. All
other variable-length classes (String, UniqueString, Vector, Process,
Natural, and CompiledMethod) had the same problem, so this proba-
bly came from a bug in the image cloning process.

3.2 The object model
Our VM mimics the Smalltalk-78 bytecode interpreter as faithfully
as possible, but has an entirely different storage model from the orig-
inal, borrowed from SqueakJS (Freudenberg 2013), which in turn
was inspired by the Potato system, an implementation of the Squeak
VM in Java (Ingalls 2008). Rather than emulating the original object
layout scheme with an object table and a contiguous memory area
for objects, it maps each Smalltalk object to a JavaScript object, and
object references are simply fields of JavaScript objects. Tagged
integers are mapped to JavaScript numbers, with typeof checks in
places where the VM needs to distinguish objects from integers and
floats.

The NoteTaker broke away from OOZE’s object zones that
placed uncomfortable limits on object size. Our VM goes further
still by eliminating the complexities of reference counting. It allows
more and larger objects (32K objects, virtually unlimited in size). It
could easily be extended to allow even more objects (by representing
oops with more than 16 bits in saved snapshots).

Instead of reference counting our VM uses a generational
garbage collector as introduced by SqueakJS. Old objects are held
in a linked list. New objects are not explicitly referenced, enabling
them to be garbage-collected by the host GC of JavaScript. An
object gets tenured when its oop is needed for the first time (typi-
cally for hashing). A full GC sweeping old and new space is rare,
basically only for become operations and when snapshotting. This
makes garbage disposal very efficient, since the vast majority of it
is not handled explicitly but by the host language.

3 The live system is available at http://lively-web.org/users/bert/
Smalltalk-78.html (Freudenberg and Ingalls 2014). The initial snapshot
can be loaded as “original image”.



FIRST_TEMP: -1,// temps, followed by callee’s stack
SAVED_BP: 0, // rel link to caller’s frame
CALLER_PC: 1, // caller’s supended PC
NUMARGS: 2, // args were stacked right to left
METHOD: 3, // method
MCLASS: 4, // method class (needed for super)
RECEIVER: 5, // top stack item in caller’s frame
LAST_ARG: 6, // stack item in caller’s frame

Figure 3. Context frame layout (relative to BP)

MINSIZE: 0, //
HWM: 1, // not used
TOP: 2, // top of stack rel to end
RESTARTCODE: 3, // code to run for restart
STACK: 4, // bottom of stack ares

Figure 4. Process layout

3.3 Linear stacks
It was enough of a stretch to make a bytecode interpreter for
Smalltalk perform acceptably on any machines available in 1978, but
getting it to run on a 4MHz 8086 microcomputer required the Xerox
team to explore every possible trick to improve speed. Because the
8086 offered special instructions for pushing and popping values
on its stack, and also for switching from one frame of temporary
variables to another, Smalltalk-76’s general Context objects were
recast into a series of overlapping context-like frames in the 8086’s
linear stack.

Figure 3 shows the layout of a Smalltalk-78 stack frame. The
base pointer (BP) pointed to the base of the context frame, and
this location held a link to the caller’s base pointer, followed by
the caller’s supended PC. The remaining locations were similar to
a normal Smalltalk context. Note that the stack grows downward
toward lower addresses: arguments are first pushed, then the receiver,
then the method info. This is followed by the caller’s PC, and a link
to the caller’s BP, after which comes the state of the new context with
temps first followed by the new context’s stack cells. A conscious
aspect of this design is that the layout of the top of the caller’s frame
is the same as the base of of the called frame, and these can simply
be aliased so that no copying of receiver or arguments, nor allocation
of a new context object is required to perform a normal Smalltalk
message send.

The linear stacks themselves were Smalltalk objects of class
Process, and these could be activated alernately to achieve a process
switch. Each process object included a header that stored its current
top of stack location, and it was possible to grow and shrink these
variable-length objects as needed. Figure 4 shows the layout of a
process object with many context frames in it, and Figure 6 shows
an example.

The alert reader will recognize that it is not possible to emulate
the operation of Smalltalk blocks with a linear stack alone. Smalltalk-
78’s RemoteCode objects (shown in Figure 5) provided the necessary
added PC and remote return point needed to support out-of-line
block execution, analogous to the RemoteContexts of Smalltalk-
76. While use of remote code was no faster than in Smalltalk-76,
almost all sends (well over 99 percent) in typical code ran using the
overlapping stack frames.

3.4 BitBlt display
Smalltalk-78’s BitBlt is relatively simple, supporting only black-
and-white bitmaps, a 4x4 halftone pattern, four source rules (src, not
src, halftone in src, halftone), and four combination rules (store, or,

FRAMEOFFSET: 0, // offset of my frame in process
STARTINGPC: 1, // PC to start or restart
PROCESS: 2, // my process
STACKOFFSET: 3, // my saved stack pointer

Figure 5. RemoteCode layout

[1970] savedBP: 8
[1971] callerPC: 139
[1972] numArgs: 0
[1973] method: a CompiledMethod: Window>>eachtime
[1974] mclass: the Window class
[1975] receiver: a BitRectEditor
[1976] temp3/t4: true
[1977] temp2/t3: a BitRectEditor
[1978] temp1/t2: 1
[1979] savedBP: 6
[1980] callerPC: 9
[1981] numArgs: 1
[1982] method: a CompiledMethod: UserView>>run:
[1983] mclass: the UserView class
[1984] receiver: an UserView
[1985] arg0/t1: false
[1986] savedBP: 5
[1987] callerPC: 31
[1988] numArgs: 0
[1989] method: a CompiledMethod: UserView>>run
[1990] mclass: the UserView class
[1991] receiver: an UserView
[1992] savedBP: 5
[1993] callerPC: 103
[1994] numArgs: 0
[1995] method: a CompiledMethod: Process>>run
[1996] mclass: the Process class
[1997] receiver: a Process
[1998] savedBP: 0
[1999] callerPC: 0
[2000] numArgs: 0
[2001] method: a CompiledMethod: Process>>goBaby
[2002] mclass: the Process class
[2003] receiver: a Process

Figure 6. Example stack frames, as shown in the VM debugger.
The method Process�goBaby was used to bootstrap the system, it is
only executed when starting up the original image, but remains the
top stack frame. The receiver slot always overlaps between frames,
and if there were arguments, those too (e.g. at index 1984/1985:
false and self were pushed by UserView�run, then run: was sent)

xor, and). Since each word stores 16 pixels, operations are relatively
fast. For even more performance we use specialized inner loops, for
example for filling, and for copying with the store rule.

To display the bits on the screen we use an HTML canvas. We
create a JavaScript ImageData object, which can be displayed on the
canvas in a single drawing call. It needs 32-bit RGBA data, which
we create pixel-by-pixel from the bits in the display bitmap. Doing
this for the full screen (1024x768 by default) would still be quite
expensive. Instead, we only do it for the rectangle affected by each
BitBlt operation. Moreover, we record these “dirty” rectangles and
merge them if possible, only actually flushing to the canvas when
needed. This has the nice effect of reducing flicker, since not every
individual drawing operation is seen by the user.



Figure 7. The debugger interface. It shows an object inspector in
the upper left, an eval pane below it, the current stack in the upper
right, the bytecodes of the current method in the lower right.

It was somewhat tricky to get the flushing right though: the
original system did not use double-buffering4. We flush whenever
an input primitive is called, because then we can assume that all
intermediate drawing operations are finished. This works very well
in general, but not for animations without user input checks. E.g.
a “flash” operation reverses a portion of the screen twice. If we
flush the screen after that, no change would be visible. So we had
to modify the Smalltalk code by inserting a flush between the two
reversals.

The canvas also shows the 16x16 pixel mouse cursor. We erase it
from its previous position by drawing those pixels from the display
bitmap just as after a BitBlt. Then it is shown at its new position.

3.5 Lively Debugging facilities
Having each Smalltalk object be a JavaScript object makes this
VM convenient to debug using the Lively Web interface. Even
before we had develped a nice VM viewer we could use Lively’s
inspectors and workspaces to interact with the VM. We soon added
a bytecode disassembler and stack display to trace the execution,
and a hierarchical inspector to explore object trees. These facilities
make good use of the reflective nature of Smalltalk: While the
VM normally does not care about instance variable names or the
contents of selectors, we decoded them to make the debug display
more meaningful (Figure 7).

Another helpful feature to get the system going were the decom-
piled sources. From independent work by Helge Horch, we had a
complete set of decompiled source code, one class per file, and we
attached to our debugger a little viewer that automatically jumped
to the source code of a method when it was invoked. Since this used
HTML text we had to map the unusual Smalltalk-78 characters to
Unicode characters as best we could. Interestingly, not all the char-
acters needed exist in Unicode5. We had to use some non-obvious
mappings, like an open triangle for the open colon (Figure 8).

4 Instead, it relied on specially selected “slow” phosphors in the cathode ray
tube to reduce flicker.
5 Perhaps there should be an effort to make them into official Unicode
symbols? APL got its own section with all operators. We would need a white
colon in particular, and perhaps an eyeball, quote, prompt and do-it chars

Figure 8. The sources view

4. Using a 36-year-old Smalltalk
4.1 Speed and Space
As the frequency of bugs dwindled, we were surprised how pleasant
it was to use this old Smalltalk. This was partly a fortuitous result of
the way in which we brought the system back to life. With the web
browser came convenience and large clear bitmap graphics; with
modern processors came more speed than the original native code;
with our new object model most object size restrictions vanished,
along with the need for any attention to reference counts.

Once things were running, there was still much work to be done,
since Smalltalk-78 was never really finished. It was completed
to the point of demonstration on the few NoteTakers that were
actually built, but the machines were difficult to use with their small
screens and marginal performance, and it was not easy to capture
changes and feed them back into new releases. Originally, the Xerox
group wrote a Smalltalk-78 image from a running Smalltalk-76
system and this was then moved to the NoteTaker and tried. After
several iterations, one image worked well enough for demos. While
a number of fixes were made and stored on NoteTaker floppy
disks, those are long gone and they were never folded back into
the snapshot we have.

4.2 Finishing the job
As our reimplementation became usable (more so than the origi-
nal), the entire team began working in it as though they had just
downloaded a completely modern tool. It was gratifying to see the
original design validated in such a way.

We fell almost instinctively into the process of “finishing” this
software. This included such tasks as . . .

• Making a convenient mechanism for saving and distributing
changeSets

• Making an automatic update system for installing newly released
changeSets

• Fixing bugs (there were several)
• Removing unused methods
• Taking advantage of the considerable increase in speed. For

instance finding all senders of a message had been so slow that
it was done by executing a code snippet in a workspace. With
the greater speed, it became natural to present such retrievals as
menu commands



Figure 9. Various tools in the updated Smalltalk-78 system

• Completing the support of the excellent Smalltalk-76 debugger
which had never been made to work completely with Smalltalk-
78’s linearized stack

• Recovering source code from an independently recovered
Smalltalk-76 file

4.3 Recovering the source sode
Source code for a method in the NoteTaker had to be decompiled
from the bytecodes of the method due to limited memory space.
Decompiled code lacks meaningful names for temporary variables
and it is also devoid of comments. Since the Smalltalk-78 snapshot
was mechanically generated from a Smalltalk-76 most methods are
identical to their Smalltalk-76 parents. With plenty of space avilable
in the revived Smalltalk-78, we made an effort to restore full source
code.

We were fortunate to find one file of source code for Smalltalk-
76, although we had no way of knowing how well it matched our
Smalltalk-78 snapshot. The file was simply a concatenation of all the
methods with no indication of what class they came from, and only
separated by arcane markers from a bygone text editor. We managed
to isolate the methods and determine their classes in most cases, and
then read them with an importer that would only accept methods if
they generated the same bytecodes (actually if they produced the

same decompilation) as the corresponding methods in our snapshot.
(See Appendix B for the details.)

An immediate benefit from decoding the sources file was that
we were able to import Kaehler’s BitRectEditor, a tool similar
to MacPaint, but developed in 1975 in an earlier Smalltalk.6 The
BitRectEditor has programmable tools, each composed of a texture
ink, a BitBlt mode, and a nib. When a tool is selected, its components
are shown in the top menu. A tool can be reconfigured by clicking
and new tools can be created on the fly.

4.4 Life in the Cloud
With Smalltalk-78 running in the browser, work within the system
became much more productive, but access to external files for
reading and writing was actually more difficult than before. Here we
were able to take advantage of hosting in the Lively Web to make
access to changes files, snapshots, and image resources actually
easier than before.

6 In the earlier Smalltalks, the whole screen was too large to fit into a single
Smalltalk object. Therefore images were stored as BitRects—objects that
held striped data in 2k-byte chunks (which was optimal for OOZE). The
image painting tool (BitRectEditor) would paint the BitRect’s bits on the
screen, do the editing using BitBlt on the screen only, and scrape the bits
back into stripes in the BitRect when done.



Figure 10. Bitmap importer with dithering UI

Files We reappropriated the existing “port” primitive (which had
been used for file i/o) to implement a simple string-based file
interface. It takes a file name string and a file contents string and
stores them in a JavaScript dictionary. It is also written to the web
browser’s localStorage, which survives reloading of the browser
page and thus provides persistence. A list of files is returned when
passing an empty file name. These (and more) methods are provided
by the user global, the current UserView instance:

1 user fileString: ’temp.txt’  ’foo�bar�baz’. "create file"
2

3 user fileString: ’temp.txt’ "retrieve file"
4 ) ’foo�bar�baz’
5

6 user fileString: ’temp.txt’  nil. "delete file"

Files can be imported by drag-and-drop and are then available to
Smalltalk.

Bitmaps A special case is importing bitmap files like JPEGs or
PNGs. The NoteTaker code obviously can not load these files
directly, as the formats had only been invented decades later. It
did, however, define a binary serialization format (asInstance and
fromInstance:) for black-and-white forms. This consists simply of
the instance variables of the Form, a few Integers followed by a
String for the bits. The Integers are stored as 16 bit big-endian
numbers, the String has a one or two byte header encoding the length
followed by the bytes. To support larger forms we extended this to
a four-byte header. When we drop a bitmap into the browser, the
system presents a Lively user interface for reducing the color range
to black and white. It supports both error diffusion (Floyd/Steinberg
algorithm) and ordered dithering. The user can adjust contrast and
brightness, then a form file is generated and stored, which can be
loaded from inside Smalltalk (Figure 10).

Networking The same VM primitive as for accessing local files is
used to store files on the server and retrieve them. If the filename
starts with “http:” then instead of storing it locally, we access it via
a WebDAV server provided by Lively.7 If the filename ends in a
slash, a list of file names in that directory is returned. This enables
seamless working in the cloud or locally.

7 It is amusing to use the term “http” in a system that predates the invention
of HTTP.

Table 1. Interpreter performance, measured on
a laptop with a 2.2 GHz Intel Core i7 CPU

Bytecodes/sec Sends/sec

Chrome 35.0 1,600,000 70,000
Firefox 30.0 6,900,000 110,000
Safari 7.0.4 9,300,000 350,000

Update stream Using the network file access we set up an update
mechanism to distribute changeSets. Each changeSet is a separate
file. There is an index file named “updates.list” containing a list
of all update file names. The image maintains its own number of
loaded updates, so it knows how many new updates need to be
loaded from the list. There are now already hundreds of changeSets
in that stream. Because loading them from the start takes a long time,
we also provide an updated image that is automatically downloaded
when a user starts Smalltalk-78 for the first time.

4.5 Performance
We ported the tinyBenchmarks from Squeak to Smalltalk-78 for
measuring raw bytecode and send speeds. Results are shown in
Table 1. Performance depends considerably on the web browser’s
JavaScript VM. For this particular workload, Safari’s Webkit JIT
compiler outperforms Chrome’s V8 engine by orders of magnitude,
with Firefox in the middle.

In reality we throttle the interpreter when it is idle, as the
interpreter speed is entirely sufficient. Idle detection works by
measuring how often the image calls the input primitives. When it is
rapidly reading the mouse and keyboard without the user providing
input, we let the VM sleep for up to 200 ms, or until a user event
arrives. Thus when the image is busy with some longer operation it
will not check for user input, and thus will not be throttled. As soon
as the user types something or moves the mouse, the VM resumes
at full speed, and keeps going for at least 500 ms before throttling
again.

Note that “full speed” here does not actually mean the interpreter
runs continuously. Unlike a regular Squeak VM which has a main-
loop that is only exited when the application quits, the Smalltalk-78
vm is callback-based, following the design of SqueakJS. That is,
the bytecode interpreter loop runs for a limited time only (typically
20 msecs) and then returns control to the web browser. This is nec-
essary so that the web browser can update the screen, which does
not happen while JavaScript is executing. Similarly, events can only
be processed while no other JavaScript function is active. Once the
interpreter loop finishes, a timer event is scheduled to restart the
interpreter loop. When throttling, the timeout is 200 ms. When not
throttling, it is 0 ms, meaning to call back into the interpreter as
soon as possible.

To get the lowest possible delay between user actions and display
response, we not only run the VM at full speed while user events
arrive. We also break out of the interpret loop early, as soon as
something was drawn to the screen (see section 3.4). Otherwise the
interpreter would continue using its current time slot and only then
return control to the browser. This would delay updating the screen
noticeably, and make the system feel sluggish.

4.6 A real test drive
As an experiment to validate not only the underlying design and de-
velopment system, but also the ability of the system to support an as
yet unanticipated application, we built a fairly capable PowerPoint-
like presentation system (all in 1-bit graphics, of course). Two exam-
ple screenshots appear as Figure 11 and Figure 12. The first of these
is performing the role of a slide sorter, with a clever BitBlt scheme



Figure 11. Presentation slides

to produce shrunken thumbnail images on the fly. The second shows
one of the slides during a full-screen presentation.

While resurrected software systems are often fragile, we were
impressed by the robustness of Smalltalk-78. Our reimplementation
had a completely different object memory and a completely different
Context discipline, but remained extremely stable throughout our
work on “finishing” the system and building this presentation
system.

As an example, besides the normal “builds” required in a
presentation system, we wanted to support multiple concurrent
animations running on the screen while editing and other operations
were being done. This required a rework of the window scheduler
to provide a queue of ticking objects, and for all existing idle loops
to yield to the scheduler in this regard. All of these changes were
made in a couple of hours in the running system with very little
problem. The picture of the ball in Figure 12 is constantly bouncing
(and appearing squashed when it hits the ground) even when other
text is being edited.

As mentioned earlier, some interesting features were stripped out
in the Smalltalk-78 image from the original Smalltalk-76 image.
Most notably, a pen stroke gesture recognizer was missing. To
demonstrate the richness of experiments, we have reimplemented a
stroke gesture recognizer. The implementation is based on a modern
algorithm called $1 recognizer (Wobbrock et al. 2007) rather than

the one that was used in the Smalltalk-76 system. The $1 algorithm
heavily relies on floating point number computation, but by writing
a few primitives to support the algorithm, it works responsively.

5. Things we learned
Small is beautiful. Systems like Smalltalk that are self-describing
are highly leveraged. This made it possible to implement Smalltalk-
78 in only 6k of 8086 assembly code on the NoteTaker. Similarly
we were able to get the system running in a browser with only
roughly 3,000 lines of JavaScript. This number grew to 4,000 as
we added various comforts such as the support for web-based file
access, but the kernel remained small. This same leverage made it a
fun project, as we were able to see “bits on the screen” after only
about 4 man-weeks of work.

Speed is nice. The improved performance of our implementation
over the original made this an exciting project as well. Many
facilities that had been barely usable on the NoteTaker and its parent
Smalltalk-76 system were delightfully responsive, and the system
therefore surprisingly productive.

Clean object API. As with most Smalltalk systems, Smalltalk-78
had a clean interface to storage, and very little work ws needed
to completely change from a reference-counted object table model



Figure 12. Editing a slide: An animation frame is repainted while the animation is playing. This feature is not “built-in”, but was added
on-the-fly by connecting two objects with one line of code. (This figure shows a composite of four successive screenshots)

to a direct pointer garbage-collected model. We were, of course,
fortunate to inherit a relatively complete JavaScript Smalltalk object
model from SqueakJS (Freudenberg 2013).

Browser and Cloud as a universal platform. Finally we learned
through this and the earlier SqueakJS project how to adapt the earlier
file-based Smalltalk systems to take advantage of the conveniences
of browsers and web-based storage facilities. Much of this work was
facilitated by our use of the Lively Web development environment,
although our completed Smalltalk-78 artifact can operate entirely
on its own.

6. Related work
In 2004 Helge Horch got our same Smalltalk-78 snapshot from Dan
Ingalls, along with the original 8086 code listings. From this he
wrote a relatively complete resurrection in Java, that is yet to be
published.

Our Smalltalk-78 VM is based on Bert Freudenberg’s “SqueakJS”
VM (Freudenberg 2013). It shares the overall design, and parts of
the implementation. For example, our BitBlt is a simplification of
SqueakJS’s BitBlt. SqueakJS in turn was inspired by Dan Ingalls’s
“Potato”, a Squeak VM written in Java (Ingalls 2008).

Another Smalltalk that now runs in a web browser is Smalltalk-
72 via Dan Ingalls’s Alto emulator (Ingalls 2013). A major differ-

ence to our approach is that this emulates Alto machine code which
then executes the interpreter, rather than building a new interpreter
running the Smalltalk bytecodes.

There are various attempts to implement different languages
for the web-browser. Among those, Amber8 is notable for being a
Smalltalk dialect implemented in JavaScript. Most of such languages
are implemented as a translator from the language to JavaScript.
The key difference in our approach is that we implement a virtual
machine that is compatible with the actual old one; this allows us to
revive the exact system.
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A. Smalltalk-78 Syntax
The syntax of Smalltalk-78 is unchanged from Smalltalk-76, which
introduced the regularity of unary, binary, and keyword messages
that is still used in modern Smalltalks. Readers may refer to the
Smalltalk-76 reference for a full description. There are no blocks as
in Smalltalk-80, no booleans, and no meta classes.

The system uses the ASCII-1963 character set (which had " and
 arrows in place of the ^ and _ characters in later ASCII versions).
From the control character range, only Tab (9) and Carriage Return
(13) are used as in ASCII, while some others are used for special
characters not found in ASCII. These include return and implication
arrows ( * ) ), comparison operators (  � 6= ⌘ ), indexing
and point creation operators ( � } ), a curved arrow for literal
quoting (used like # in Smalltalk-80), a unary minus (for prefixing
negative numbers, as in 3 � �4), a possessive operator (evaluates
an expression in the context of another object, e.g. obj ’s ’instvar’),
and a few more. See Figure 13 for a complete list. This code snippet
also demonstrates a few idiosyncrasies:

Conditional execution A block of code can be conditionally eval-
uated using the) operator. It maps directly to the “jump if not
false” bytecode (where false is just an instance of Object known
to the VM compared by identity). If the condition is false, the
following block of code is skipped. Any object other than false
causes the conditional jump not to be taken, so the code block is
executed, followed by an unconditional jump to the end of the
surrounding code block. This allows putting an “else” case right
after the conditional block. If execution should resume after the

Figure 13. Non-ASCII characters used in Smalltalk-78

else case, another set of brackets needs to be put around it, as
demonstrated in Figure 13.

Deferred evaluation Brackets are merely a syntactic device to
group statements, they do not create a block object as in
Smalltalk-80. How then does e.g. “for��from:do��” work? The
magic is not in the brackets, but in the two variants of the colon
in a keyword message. The regular colon “:” causes the keyword
argument to be evaluated immediately. For an open colon “��”
however, the compiler generates a “remote copy” of the cur-
rent context. This RemoteCode can be evaluated later, and even
repeatedly if desired.
There are two variants for evaluation, with and without an
argument. The form with an argument (value ) can be used
to assign a value to a variable, the form without an argument
(eval) just evaluates the code. These work together, as there
is no way to pass arguments to a block other than “remotely”
assigning to temporary variables. This is perhaps best explained
with an example. A possible implementation of “for��from:do��”
could look like this:

1 for�� var from: vec do�� code | stream item
2 [
3 stream  vec asStream.
4 while�� [item  stream next] do�� [
5 var value  item.
6 code eval.
7 ]
8 ]

Note that “for��from:do��” is not actually a method, but a compiler
macro (as evidenced by the missing receiver). It could, however,
be a regular method as just described.

Assignment selector The last part of a keyword selector can be an
assignment arrow. E.g. “stream next 5” writes an item to the
stream, whereas “stream next: 5” reads 5 items from the stream.
To the method this is just like any other argument. But on the
sending side, the parser treats the expression after as if it was
an assignment. That means no parentheses are needed around
that expression. This also works for binary operators extended
by an assignment arrow, making it a ternary operator. E.g.
“a � 1  b � 1” uses the � and �  operators. It is equivalent
to Smalltalk-80’s “a at: 1 put: (b at: 1)” but reads a lot nicer
and needs no parentheses.

No metaclasses The expression “Stream default” looks like it
invokes a “class-side method” if it was Smalltalk-80. But
Smalltalk-78 did not have a metaclass hierarchy in parallel
to the regular class hierarchy. All classes are an instance of Class
so no class-specific methods are possible. Instead, Class provides
a couple of methods that dispatch to a new instance. E.g. the
implementation of Class�default is “* self new default”. In the
Stream case, this invokes Stream�default which initializes the
stream for writing on a new String.



B. Source code recovery
The Smalltalk-76 sources file we found was “Smalltalk.Sources.5.5k”
from November 22, 1980. Methods in the file have no class name
associated with them. Instead, every method inside a running ST-76
has an offset pointing the beginning of its text in the sources file.
Unlike a Smalltalk-80 sources file, a method from the Smalltalk-76
file is not ready to be ‘filed in’ to a running Smalltalk. The methods
in Smalltalk-76 sources are grouped by class, but we did not always
know which class it was. It was also hard to tell where one class
ended and another began.

The first thing we did was to build a table of all methods in
the 5.5k sources file in a modern Squeak. The table had an entry
containing the selector, the method source text, and a space for
the class. We could write out any table entry as an expression that
could install that method in Smalltalk-78. Freudenberg arranged that
dropping a file on a web browser running the interpreter placed the
file in a list that Smalltalk-78 could see. From a menu inside the
running Smalltalk-78, we could “file in” that file.

The selective importer let us bring in source code without
changing the bytecodes, but we still worried about two methods
in different classes having wildly differing comments. Methods
named comment were a prime example, but also +, �, /, =, copy,
to:, and printOn:. There were 89 of these ambiguous selectors in
Smalltalk-78. We wrote out every (class, selector) pair and included
a crude hash for its bytecodes. This allowed us to detect same-name
methods where both versions would pass the decompile test.

For the first round, we wrote out all of the methods in Smalltalk-
76 that would be non-ambiguous in Smalltalk-78. We still did not
know which of several implementations of a selector in Smalltalk-76
was the right one. We simply wrote out all of the implementations!
For a given selector, we sent every source version to every class
that had it. We depended on the importer to accept only the correct
version for each class. This worked. We collected the accepted
methods in changeSets and wrote them to files. We sent 1644k of
source, of which 241k was accepted.

Back in Squeak, we parsed the Smalltalk-78 fileouts to discover
what class had claimed each version of a method. We wrote those
class names into the table of Smalltalk-76 methods.

How could we get the right class attached to source code for the
ambiguous selectors? The code for each class was contiguous in
the Smalltalk-76 sources file. We assumed that for every ambiguous
selector, at least one other method in that class was unambiguous. If
we started at an ambiguous method, and looked in both directions
in the Smalltalk-76 table, we would come across a class name in
each direction. If the two classes were different, we simply sent two
copies of the method to the merge test. We sent 20k of sources to
Smalltalk-78 for the ambiguous selectors, and 16k was accepted.
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Abstract
Answering run-time questions in object-oriented systems in-
volves reasoning about and exploring connections between
multiple objects. Developer questions exercise various as-
pects of an object and require multiple kinds of interactions
depending on the relationships between objects, the applica-
tion domain and the differing developer needs. Nevertheless,
traditional object inspectors, the essential tools often used to
reason about objects, favor a generic view that focuses on
the low-level details of the state of individual objects. This
leads to an inefficient effort, increasing the time spent in the
inspector. To improve the inspection process, we propose the
Moldable Inspector, a novel approach for an extensible ob-
ject inspector. The Moldable Inspector allows developers to
look at objects using multiple interchangeable presentations
and supports a workflow in which multiple levels of con-
necting objects can be seen together. Both these aspects can
be tailored to the domain of the objects and the question
at hand. We further exemplify how the proposed solution
improves the inspection process, introduce a prototype im-
plementation and discuss new directions for extending the
Moldable Inspector.

Categories and Subject Descriptors D.2.6 [Software Engi-
neering]: Programming Environments—integrated environ-
ments, interactive environments

General Terms Tools, Languages, Design

Keywords Object inspector, Domain-specific tools, User
interfaces, Programming environments

1. Introduction
Objects integrate data and behavior to model relevant con-
cepts from application domains. Computation is further ex-
pressed in terms of interactions between objects. Therefore,
understanding objects along with their relationships is criti-
cal for developing and evolving object-oriented applications.

Due to their nature, object-oriented applications have a
dual representation: static, in terms of source code, and dy-
namic, in terms of objects. Developers often focus on the
static source code to gain insight into the dynamic represen-

tation, however, due to mechanisms like inheritance, poly-
morphism and dynamic binding, understanding objects and
relations between objects based only on a static view of the
code poses many difficulties [5].

Object inspectors offer a better alternative as they enable
developers to explore the actual run-time objects. Inspectors
offer generic mechanisms to display and explore the state of
an arbitrary object, however they do not take into account the
varying needs of developers that could benefit from tailored
ways to view and explore object state.

Consider the question of determining whether or not a
graphical component that has a certain visual characteris-
tic is present within a list of graphical components. A visual
representation of the graphical component provides more in-
sight than just looking at the state of that component. A dif-
ferent question from a different domain consists in determin-
ing if an object representing a directory contains a particular
file. An object inspector showing the list of files contained by
the directory object can provide a straightforward answer.

A generic solution focusing only on object state, while
universally applicable, fails to highlight what aspects of an
object are important in a given development context. By
a development context we understand a specific run-time
question from a specific domain (e.g., fixing a performance
problem in a parser, finding a memory leak in a graphical
framework). This mismatch increases the inspection time as
developers have to manually search for what is relevant for
their particular contexts.

Traditional object inspectors exhibit this problem since:

• They rely on predefined, generic state-based presenta-
tions for displaying objects, thus ignoring significant dif-
ferences between objects in different domains;

• They focus on individual objects, thus providing only
rigid mechanisms for exploring relations between ob-
jects.

These problems can be solved if instead of using a generic
object inspector a developer relies on an object inspector that
can easily be adapted to the development context at hand
(i.e., both the application domain and the developer ques-
tion). We consequently propose the Moldable Inspector, a



(a) (b)

Figure 1: Two distinct way to look at a morph object for choosing colors
depending on the developer needs: (a) presentation showing the visual
appearance; (b) presentation showing the structure (the tree of submorphs).

novel approach for an extensible object inspector that (1)
allows developers to inspect at objects using multiple in-
terchangeable presentations, and (2) provides a workflow in
which multiple levels of connecting objects can be seen to-
gether, and navigation between objects is guided by the do-
main and the question. The Moldable Inspector further relies
on the idea of using code to both steer the inspection process
and to extend the existing presentations at inspection time.

To validate the proposed approach and show that it has
practical applicability, we are developing a prototype imple-
mentation in Pharo1, a modern Smalltalk environment. The
current version of our implementation features most of the
core functionality of the proposed framework in less than
500 lines of code. Furthermore, it has been used to create
more than 70 extensions requiring, on average, 8 lines of
code per extension. Its small size has two practical advan-
tages: on the one hand it makes it easy to understand; on the
other hand it makes the adaptation of the inspector to new
run-time questions and domain objects affordable.

The contributions of this paper are as follows:

• Introducing the Moldable Inspector framework for defin-
ing a context-aware object inspector;

• Presenting the current prototype instantiation of the
Moldable Inspector and discussing several implemen-
tation aspects;

• Proposing new directions for extending the Moldable
Inspector framework.

2. Why basic inspectors are not enough
To successfully answer a run-time question in an object-
oriented system, developers have to identify which objects
are relevant for that question and understand those objects
along with their interactions. One can anticipate neither what
objects will be needed, nor what aspect of an object (e.g.,
state, code, memory usage, dependencies) will be important
for a given question. Thus, object inspectors viewing objects
through generic state-based presentations and offering fixed

1 http://pharo.org
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Figure 2: Two distinct ways to look at a directory object depending on
the developer needs: (a) presentation showing the state of the object; (b)
presentations showing the contained files and directories

mechanisms for navigating between objects are less suitable
for answering run-time questions in object-oriented systems.
This section exemplifies these problems.

2.1 Limitations of viewing objects through single views
In Pharo the Morph class is the root class for all graphi-
cal components. A morph can contain other morphs (i.e.,
submorphs). If a developer wants to locate a morph object
within a collection, she would benefit from its visual appear-
ance (Figure 1a), but if she wants to debug issues related
to the structure of the morph, she needs to see and explore
the tree of submorphs (Figure 1b). Both of these represen-
tations are valid, but they serve different interests. This type
of problem is not isolated and can be found in various other
situations.

A different use case consists in inspecting objects mod-
eling various resources. Consider instances of the class
FileReference that can refer to a concrete file or directory.
During inspection these objects require different represen-
tations depending on the developer needs. For example, a
state view is sufficient for determining the path of a directo-
ry/file (Figure 2a). However, if a developer needs to explore
the content of a file/directory, looking just at the state of
the corresponding object is not appropriate; a presentation
showing the content serves the purpose better. A presenta-
tion for a directory (Figure 2b) can show the list of files from



Figure 3: Inspecting a list of files/directories with an object inspector
relying on a tree for exploring object state. It is not possible to immediately
access the content of a file/directory.

that directory, while one for a file can display its content; the
presentation could differ from a file to another depending
on the type of the file (e.g., image, text, xml, html). Even if
objects representing files and directories are instances of the
same class, exploring their content requires different presen-
tations. An object inspector that focuses solely on the state
of an object does not support this use case.

2.2 Limitations when focusing on individual objects
On the one hand, visually searching for certain objects
within lists (e.g., spotting a particular file/directory inside
a directory) requires presentations that make it easy to iden-
tify the desired objects (e.g., show the content of a file/direc-
tory). On the other hand, this task also requires a developer
to simultaneously interact with two objects: the list and an
element from that list. Object inspectors that focus on the
state of single objects lead to a time consuming exploration
effort. Consider using an object inspector representing an
object as a tree to look for a particular file/directory within
a given directory (Figure 3). This inspector does not provide
easy access to the content of a file/directory and further re-
quires a developer to permanently expand and collapse the
elements of the target list, increasing the time spent in the
inspector.

Another limitation of an object inspector providing only a
fixed navigation based on object state is that it does not allow
a developer to reach objects not stored in an instance variable
of an object already accessible from the inspector. Consider
a developer wishing to navigate from a morph representing
a list to its context menu (i.e., to check if the context menu
has the correct structure). Unfortunately, the context menu
is generated on demand every time a user right-clicks on

View on
Object 1

View on
Object 2

View on
Object 3

Figure 4: An inspection session consisting of three objects, where each
object defines three basic presentations. Gray presentations are valid in one
development context, while white presentations are valid in another devel-
opment context. A moldable presentation selects only those presentations
that are relevant for the current development context.

an element of the list and is never stored in an instance
variable of the morph, thus, it won’t be accessible if we can
only navigate between objects based on their state. This is
an example of a more general problem where references to
objects that we wish to navigate to are not actually stored in
instance variables of the objects we are currently inspecting.

3. The Moldable Inspector framework
The Moldable Inspector supports developers in reasoning
about run-time questions in specific application domains by
providing moldable presentations and moldable navigation.
Moldable presentations make it possible for an object to
have multiple interchangeable presentations tailored to the
domain and the question at hand. Moldable navigation pro-
vides a workflow in which multiple levels of connecting ob-
jects can be seen together and navigation between objects is
guided by the domain and the question at hand.

3.1 Moldable presentations
Reiss argues that software understanding requires custom vi-
sualizations tailored to the problems at hand [8]. In the con-
text of object inspectors we argue that understanding objects
requires presentations tailored to both the domain and the
question at hand (i.e., the development context). While dif-
ferent objects require different presentations, given that they
model different entities, the same object requires multiple
presentations that depend on multiple usage contexts.

To address this, the Moldable Inspector allows an object
to define a set of multiple interchangeable presentations cap-
turing interesting aspects of that object in various develop-
ment contexts. We will refer to these presentations as basic
presentations. A developer can then inspect an object using
a moldable presentation that selects only those basic presen-
tations that are suitable for the current development context.

Moldable presentations are made possible by the Mold-
able Inspector reifying the current development context (i.e.,
the domain and the question). An object can thus define a
wide set of presentations, not all relevant to a particular con-
text, however, in a given development context a moldable
presentation only shows those presentations relevant for that
context (Figure 4).
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Figure 5: The model behind the Moldable Inspector framework: the
Session objects reifies the development context; objects define multiple
presentations; presentations can indicate relevant objects; when used, only
those presentations relevant to the current development context are selected.

3.2 Moldable navigation
Understanding a run-time question involves reasoning about
multiple objects and exploring connections between objects.
Different types of questions require different kinds of inter-
actions depending on the relationships between objects, the
domain and the differing developer needs. Viewing one ob-
ject at a time and hardcoding the reachable objects by only
supporting state-based navigation does not support well this
activity.

To overcome these limitations the Moldable Inspector of-
fers moldable navigation, i.e., a workflow in which multiple
levels of connecting objects can be seen together and nav-
igation between objects is guided by the question and the
domain. This navigation mechanism is obtained by allowing
each basic presentation to indicate a set of relevant objects
that could be inspected next (Figure 5). Since objects are
displayed during an inspection session using moldable pre-
sentations, only basic presentations relevant to the current
question and domain are accessible; thus, the objects indi-
cated by those basic presentations will also be relevant in
that situation. However, as one cannot anticipate all devel-
oper needs, code can be used to steer the inspection process
on-the-fly and increase the set of reachable objects.

4. Implementation aspects
In this section we present the current prototype instantiation
of the Moldable Inspector, called the GTInspector, and dis-
cuss several implementation aspects. The GTInspector is in-
tegrated into Moose2, a platform for data and software anal-
ysis [6].

4.1 Supporting moldable presentations
A moldable presentation consists of a set of basic presenta-
tions selected according to the current development context.
This feature requires mechanisms to associate basic presen-
tations with objects, specify a development context, and fil-
ter basic presentations based on the development context.

2 http://moosetechnology.org

Figure 6: GTInspector displaying a directory and one contained file.
Both objects have presentations to display the state and the source code
of their class. The directory further has a presentation for showing the
contained files/directories (“Items”). The file represents an image and has a
presentation that shows its content as text (“Raw”) and one that displays the
actual image contained in that file (“Picture”).

Once a moldable presentation has been computed a solution
that can display multiple basic presentations is required.

In the current implementation a basic presentation is as-
sociated with an object by defining in the class of the ob-
ject a method constructing the presentation and marking it
with a predefined annotation. Currently defining a develop-
ment context and filtering presentations based on it is not
supported. Instead, regardless of the context, an object is
represented using all the available presentations. An object
with multiple basic presentations is displayed using a tabu-
lator widget, where each presentation is added as a tab. This
allows for interchangeable presentations and also gives an
overview of all the basic presentations available for an ob-
ject. Figure 6 shows how a directory and a file object are
represented using this approach.

By default two basic presentations are added to every
object: one shows the state of the object while the other gives
access to the source code of the object class. By making
the state of every object available, we support the classic
way of using an inspector. Furthermore, by making the class
of the object immediately browsable the inspector supports
a common use case of looking implementation up during
inspection time.

4.2 Supporting moldable navigation
Providing support for navigating between objects requires
a mechanism to show connections between objects. GTIn-
spector shows connections between objects using the Miller
columns technique3: the next object is always shown to the
right. This preserves the entire logical flow of how the devel-
oper got to an object. At any moment a predefined number
of columns (i.e., objects) is visible and a scroll bar is used to
access previous columns.

To support moldable navigation we need to allow basic
presentations to indicate relevant objects and support devel-
opers in using code to guide the inspection process. To sup-

3 http://en.wikipedia.org/wiki/Miller_columns



port the first aspect GTInspector allows developers to con-
tinue the navigation by selecting any object available in the
current presentation. The second aspect is also supported as
the presentation showing the state, available for every ob-
ject, can be used to write code executed in the context of an
object. This can be seen in Figure 6 where the object on the
right was obtained by executing the code “self files at: 7” on
the object on the left.

4.3 The cost of new presentations
GTInspector has been used to create over 70 basic presen-
tations for 40 different types of objects. On average a basic
presentation requires 8 lines of code. Their small size makes
them easy to understand and makes the creation of new ba-
sic presentations an affordable activity. To give a feeling of
the amount of code required to create a new presentation the
following lines show how to specify a tree presentation dis-
playing the structure of a morph:

1 composite tree
2 title: 'Submorphs';
3 rootsExpanded;
4 display: [:rootMorph | {rootMorph}];
5 format: [:morph | morph printString];
6 children: [:morph | morph submorphs];
7 when: [:morph | morph submorphs notEmpty]

5. Improving the inspection process
To show that the GTInspector improves the inspection pro-
cess in this section we look at how it addresses the limi-
tations of traditional object inspectors encountered in Sec-
tion 2.

5.1 Multiple presentations for objects
Section 2 showed that depending on the development con-
text one needs to see either the visual appearance of a morph
or its structure. The GTInspector addresses this requirement
as it can provide two basic presentations capturing these
two aspects (Figure 7). It can further provide dedicated pre-
sentations for inspecting FileReference objects based on the
type and content of the object. For example, a FileReference
object representing a directory has a presentation show-

ing list of files/directories within that directory (Figure 8).
FileReference objects representing files have dedicated pre-
sentations that display the content of the file in a proper way
(e.g., a file storing a picture is displayed using a visualization
– Figure 6, while a file representing a script using an editor
with proper syntax highlighting – Figure 8.)

5.2 Flexible navigation
Visually searching for particular objects within lists becomes
possible with the GTInspector: while iterating over the list
elements one can obtain a moldable presentation showing
each element. For example, to locate a file based on its
content one can iterate over the files of a directory and view
each file using a specialized presentation (Figure 8).

Figure 7: Two different ways to look at a morph for choosing colors.

Figure 8: Exploring the content of a directory.

Using code to guide the navigation process makes it pos-
sible to reach objects not directly stored within instance vari-
ables: Figure 9 shows how one can obtain the context menu
of a list morph showing file objects, execute an action from
that menu and inspect the result. First the context menu is ex-
tracted using the code “self getMenu: false” (the false value
indicates the shift key was not pressed). As the menu is a
morph we can inspect it visually. Then we can execute the
last action, “Copy”, which copies a textual representation of
the selected object to the clipboard, and finally inspect the
current value from the clipboard to see if it is correct.

6. Further directions
While the GTInspector supports a fully functional object in-
spector there are a number of directions that can be explored
in order to further improve it. These include, but are not lim-
ited to: identifying common types of recurring run-time sce-
narios and determining types of basic presentations useful in
for addressing those scenarios, modeling the history of an in-
spection session as a first class entity, improving navigation
through large inspection sessions.

6.1 Identifying recurring run-time scenarios
Currently the GTInspector allows objects to have different
representations in different development contexts. However,
the responsibility of deciding which presentation is relevant
in the current development context falls solely on the devel-



Figure 9: Performing a navigation scenario involving objects that are not directly linked through instance variables: extract the context menu of a list morph,
run an action from the menu and verify the result. The first pane shows the tree morph, the second the context menu and the last the current value from the
clipboard. At each step code is used to navigate to the next object.

oper. Identifying a set of common scenarios and determining
which presentations are useful in those scenarios would lift
part of this burden from developers: with the common use
cases already supported, developers would only need to fo-
cus on creating presentations for their specific situations.

6.2 The inspection session as a first-class entity
While the GTInspector provides support for moldable navi-
gation one has to manually repeat inspection sessions. Mod-
eling the history of an inspection session as a first-class en-
tity would make it possible to store, find and reuse inspection
sessions.

6.3 Navigation improvements
While Miller columns are intuitive to use, they have two
main drawbacks: (i) they require horizontal scroll bars to
show deep hierarchical structures (e.g., a deep inspection
session) and (ii) they do not indicate the relation between
two columns (e.g., what did the user do to navigate from one
object to the other). We are currently investigating how to
solve these problems by providing a new type of scrolling
widget showing an overview of the entire inspection session
and indicating the relation between columns.

7. Related work
There is a wide body of research looking at how to improve
the effectiveness of comprehension and development tools
by finding and highlighting contextual information and pro-
viding better support for exploring code and data.

Code Bubbles brings the idea of a session of inspection
to code understanding and debugging [1, 4]. The approach
shows the related entities next to one another and allows the
developer to manipulate and store them in sessions. How-
ever, this approach still relies on single representations for
each entity regardless of the context, and object inspection
is particularly only offered through a classic tree like view.

While the focus of our paper is on the conceptual struc-
ture of an inspector, the actual implementation is still an in-

teresting aspect that deserves a discussion. The rendering of-
fered by Code Bubbles allows the developer to manipulate a
tree, rather than only a list. On the one hand, this is a pow-
erful tool to understand more complicated scenarios. On the
other hand, it is a more complicated interface that relies on
the developer to organize the bubbles. Our implementation
relies on a Miller columns design that requires little space
and little spatial maintenance effort from the developer.

jGRASP is an integrated development environment pro-
viding object viewers that like our approach allow objects to
have multiple presentations [3]. However, jGRASP always
shows the same objects through the same views as it does
not take into account the development context in which those
objects are encountered.

Eclipse4 allows developers to create custom textual rep-
resentation for objects using “Detail Formatters”. Each class
can have a Detail Formatter consisting of a snippet of code
that constructs a custom string value used to display in-
stances of that class. NetBeans5 and IntelliJ6 allow devel-
opers to attach multiple such formatters to a given class and
switch between them at run time. Unlike the Moldable In-
spector these approaches only allow objects to have text rep-
resentations.

8. Conclusions
Different types of questions exercise different aspects of an
object and require different kinds of interaction depending
on the relationships between objects, the application domain
and the differing developer needs. To support this we pre-
sented a novel approach, called the Moldable Inspector, for
developing an extensible object inspector that can be adapted
to both the objects of a domain and the questions at hand.
The development context is reified and used to both select
presentations and steer the navigation between objects using
a workflow in which multiple levels of connecting objects

4 eclipse.org/ide
5 netbeans.org
6 jetbrains.com/idea



can be seen together. To show that the Moldable Inspec-
tor has practical applicability we presented the GTInspector
prototype, and discussed several scenarios in which it im-
proves the inspection process.

The Moldable Inspector is part of a broader work on
meta-tooling (i.e., tools for building tools) that aims to en-
able developers to quickly and effectively customize the IDE
to suite their development contexts [7]. The Moldable In-
spector follows on the Moldable Debugger [2] work that
proposed a new approach for developing domain-specific de-
buggers.
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Abstract
The domain of context-free languages has been extensively
explored and there exist numerous techniques for parsing (all
or a subset of) context-free languages. Unfortunately, some
programming languages are not context-free. Using standard
context-free parsing techniques to parse a context-sensitive
programming language poses a considerable challenge. Im-
plementors of programming language parsers have adopted
various techniques, such as hand-written parsers, special lex-
ers, or post-processing of an ambiguous parser output to deal
with that challenge.

In this paper we suggest a simple extension of a top-down
parser with contextual information. Contrary to the tradi-
tional approach that uses only the input stream as an input to
a parsing function, we use a parsing context that provides ac-
cess to a stream and possibly to other context-sensitive infor-
mation. At a same time we keep the context-free formalism
so a grammar definition stays simple without mind-blowing
context-sensitive rules. We show that our approach can be
used for various purposes such as indent-sensitive parsing,
a high-precision island parsing or XML (with arbitrary el-
ement names) parsing. We demonstrate our solution with
PetitParser, a parsing-expression grammar based, top-down,
parser combinator framework written in Smalltalk.

Keywords Parsing Expression Grammars, Semi-Parsing,
Top-Down Parsing, PetitParser, Context-Sensitive Parsing

1. Introduction
Context-free grammars (CFGs) [1], which are used to de-
scribe context-free languages, are very popular among parser
developers. There are numerous parsers for a subset of CFGs

[Copyright notice will appear here once ’preprint’ option is removed.]

(LALR, LR, LL and others [2, 3]) and there are techniques
for a full set of CFGs as well (GLR [4], GLL [5]).

Parsing Expression Grammars (PEGs) are another for-
malism for describing languages [6]. PEGs are closely re-
lated to top-down parsing and they are syntactically similar
to context-free grammars. PEGs can handle some context-
sensitive grammars (CSG), e.g., anbncn [6], but they cannot
handle all of them.

Unfortunately, some computer languages cannot be ex-
pressed with either CFGs or PEGs. For example, C is not
context-free because of its typedef feature. Python [7] has
a context-free grammar definition,1 but it requires a spe-
cial lexer “on steroids” to generate indent and dedent to-
kens. Many languages might have an ambiguous context-
free grammar because of the famous dangling else prob-
lem.2 Even an XML-like language with arbitrary element
names (contrary to a finite set of element names) cannot be
expressed in CFG. The common approaches to overcome
the limitations of context-free parsers is to write a parser
manually (e.g., Ruby), or add pre-processing (e.g., Python)
or post-processing phase (e.g., XML, dangling else prob-
lem). Such approaches are not automated and can be time-
consuming and error-prone.

In this paper we suggest a simple extension to top-down
parsers that allows for context-sensitive behaviour. We pro-
pose to extend the input parameter of a parsing function from
an input string to a parsing context. A parsing context con-
tains an input string, but it can also contain other informa-
tion. Any parsing function can access whole context infor-
mation and is allowed to change it. Because the result of
parsing can depend on something other than an input stream,
we can increase the computational power of a parser. For ex-
ample, if a parsing context contains a stack we can reach the
computational power of a Turing machine [8]. 3

1 https://docs.python.org/3/reference/grammar.html
2 http://en.wikipedia.org/wiki/Dangling_else
3 If a pushdown automaton (context-free parser) is extended with a second
stack it can simulate a Turing machine. The first stack simulates a tape to
the left of the current position, the second stack simulates a tape to the right
of the current position.
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Yet we don’t want to give up the simplicity and com-
prehensibility of context-free grammars. We therefore keep
the context-free formalism (i.e., rules of the form N  X ,
where N is nonterminal and X is a sequence of nonterminals
and terminals), and we hide the context-sensitivity behind
nonterminals that refer to parsing functions utilizing pars-
ing contexts. The rules are universal and can be used (and
re-used) in multiple grammars.

We have implemented our idea in PetitParser [9], a top-
down PEG-based parser combinator [10] framework using
packrat parsing [11] written in Smalltalk.

The contributions of this paper are (i) a description of a
simple extension that enables the implementation of context-
sensitive features in top-down parsers; (ii) an implementa-
tion in PetitParser; and (iii) a brief description how to use
parsing contexts to implement universal nonterminals for in-
dentation sensitive parsing, XML parsing or high-precision
island parsing.

The paper is organized as follows: section 2 describes our
extension. Section 3 shows how to implement our extension
in PetitParser and discusses the backtracking, memoization
and modularity issues. Section 4 presents how to use our
extension to implement context sensitive features, namely
indentation-sensitive parsing and high-precision island pars-
ing. Section 6 presents the related work and the section 7
concludes this paper.

The implementation of our extension is available online.4
The reader is invited to download and explore the examples.

2. Parsing Contexts in a Nutshell
The basic idea of parsing contexts is very simple: Use a
parsing context as an input to a parsing function instead of an
input stream. A parsing context encapsulates an input stream
as well as possibly other information. Any parsing function
can access the context and can modify it.

This greatly increases the computational power of a tra-
ditional context-free parser without introducing hard-to-read
grammatical rules. We seek to parse programming languages
that are a subset of context-sensitive languages while aim-
ing for simplicity and comprehensibility. For this reason the
rules adhere to a context-free formalism. The rules are still
in a form N  X , where N is nonterminal and X is a se-
quence (possibly empty) of nonterminals and terminals. The
context-sensitive behaviour is hidden behind universal non-
terminals that can be used in various use cases.

Our solution is applicable to any top-down parser. Top-
down parsers use backtracking [12], which provides unlim-
ited lookahead, while using memoization (i.e., caching) to
avoid exponential complexity that arises when the same text
is repeatedly parsed in backtracking alternatives [11, 13]. It
is therefore essential for parsing contexts to support these
techniques.

4 http://smalltalkhub.com/#!/~JanKurs/PetitParser/

To enable backtracking, it must be possible to remember
and restore contexts. When a top-down parser approaches
a decision point, the parsing context is saved; then an al-
ternative is selected. If the given alternative proves to be a
good one, parsing continues as usually. If the given alterna-
tive fails, the parser restores the context (which might have
changed while parsing the alternative) and tries another al-
ternative.

To support memoization, a context has to provide a key
to the lookup table of cached results. A standard memoizing
parser stores the results of parsing under a key consisting of
an (input, position) pair. With parsing contexts, the key be-
comes (input, position, context). This functionality overlaps
with the remember and restore functionality used in back-
tracking.

Parsing contexts do not change the semantics of context-
free parsing function (e.g., choice, sequence) and imposes
almost no performance overhead.

2.1 Using Parsing Contexts
To access a parsing context we use an anonymous parsing
function. Its only parameter is a parsing context. The body
of the parsing function can be almost any code in a target
language. The contract of the parsing function is to return a
consumed input (possibly empty) in the case of a successful
parse, or to return failure f in the case of an unsuccessful
parse. To define a parsing function p, we use the following
syntax N  [:context | ... ] . We extend rules of the
form N  X with the variant N  p to define context-
sensitive nonterminals.

The idea of parsing contexts emerges in combination with
a parsing framework that predefines some important context-
sensitive parsing functions. These functions are then referred
to by universally applicable non-terminals. Thus, a grammar
implementor does not need the specialized form N  p

and can stick with the familiar context-free formalism.
Take for example an XML-like language. The rule:

R  ’<’ID’>’ ’</’ID’>’

is not context-free if we want arbitrary ID s to match (and
if there is an unbounded number of possible ID s [8]), so
it cannot be expressed in a context-free form. A developer
has to define a context-free grammar that accepts a superset
of XML with any ID pairs and implement an extra pass to
verify if the ID pairs match.

Yet, if a framework predefines context-sensitive nonter-
minals OPENTAG and CLOSETAG representing the open-
ing and closing of an XML element, we can simply use
these nonterminals. The context-sensitive XML-like gram-
mar looks just like a context-free one:

start  element
element  OPENTAG content CLOSETAG
content  element*
ID  letter+
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OPENTAG  [: context |
result  ID parse: context.
context elemStack push: result.
" result

]

CLOSETAG  [: context |
result  ID parse: context.
(context popStack == result)

ifTrue: [
" result.

].
" Failure

]

Listing 1. Implementation of OPENTAG and CLOSETAG
using parsing contexts and Smalltalk as an implementation
language.

The developer does not need to know that there is a
hidden (possibly complex) code using parsing contexts, as
Listing 1 shows.

Another example, in the case of C-like languages, is a
TYPEDEF nonterminal that stores the type name into the

type table in a parsing context, and a TYPE nonterminal
that succeeds only if it sees the identifier that is in the type
table.

In case of Python-like layout sensitive-languages, we can
define INDENT and DEDENT tokens. From the user’s point
of view, they are just non-terminals and their complexity is
hidden.

3. PetitParser Implementation
PetitParser is a popular PEG implementation for Smalltalk
(see Appendix A). PetitParser is easy to adapt to parsing
contexts. It suffices to change the parse: method from:

PetitParser >>parse: stream
...

to the context-aware parsing method:

PetitParser >>parse: aContext
...

Object subclass: #Context
instanceVariables: ’stream ’

Context >>stream
" stream

For convenience we extend Context with the Stream
protocol as depicted in Listing 2.

Contexts are extensible with the help of a properties pro-
tocol. Properties are stored in a dictionary instance vari-
able and can be accessed and set via getProperty: and
setProperty:to: methods.

Context >>next
"Mimic stream behaviour"
" stream next

Context >>peek
"Mimic stream behaviour"
" stream peek

Listing 2. A Context mimicry to provide a Stream
protocol.

Context >>remember
| memento |
memento  ContextMemento new.
memento stream: stream copy.
self rememberProperties: memento.

" memento

Context >>restore: memento
stream  memento stream copy.
self restoreProperties: memento.

Context >>rememberProperties: memento
properties keysAndValuesDo:
[:key :value |

memento setProperty: key
to: value copy.

]

Context >>restoreProperties: memento
memento propertiesKeysAndValuesDo:
[:key :value |

self setProperty: key
to: value copy.

]

Listing 3. A memento protocol of Context .

To save and restore contexts we apply the memento pat-
tern [14] (Listing 3). To ensure that a memento cannot be ac-
cidentally changed, setters and getters are implemented us-
ing a copy .

We use the memento to support backtracking, and to
implement a memoizing parser that adopts the memento as
a key to the memoization table (Listing 4).

4. Case Studies
We now present two advanced applications of parsing con-
texts, one to support indentation-sensitive parsing, and an-
other to support island parsing.

4.1 Indentation Sensitive Parsing
Indentation-sensitivity (used in Python, Haskell, and F#) is
an interesting feature that is hard to implement in context-
free parser.
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MemoizingParser >>parseOn: context
| key result |

key  context remember.
result  memoTable at: key

result ifNotNil: [
" result

].

...

Listing 4. An implementation of MemoizingParser

compatible with Context .

Python uses a special lexer to produce context-sensitive
tokens indent and dedent, that represent an increased or
decreased indentation of a first word on a line. Python’s lexer
maintains a special stack to track indentation levels. As the
indents token is recognized a new value is pushed to the
stack. As the dedent token is recognized a value is popped
from the stack.

PetitParser is designed to build scannerless parsers. As
such, it offers no easy way to track indentation levels. By
extending PetitParser with parsing contexts, we can easily
track this additional information with the help of an inden-
tation stack. We define two new parsers, IndentParser

and DedentParser that mimic the Python-like indent and
dedent tokens. Indent succeeds if a line starts in a column
greater than the current one in the indentation stack. De-
dent succeeds if a line starts on the column that matches
the one at the top of the stack. See Listing 5 and List-
ing 6. Both parsers access the Context and modify the
#indentation property containing the indentation stack.

We demonstrate their use in Listing 7 where we define an
indentation-sensitive rule suite . A suite is a block of
code whose statements are all at the same indentation level.

4.2 Bounded Seas
Island parsing [15] is a form of semi-parsing used to recog-
nise just certain parts of interest in a source file (i.e., the
“islands”) and ignore the rest (i.e., the “water”). The tradi-
tional approach of island parsing defines water as “anything
if everything else fails”. Such a water is easy to define but it
ignores the structure of a grammar.

To illustrate, consider an XML file with a list of items as
in Listing 8. Each item contains a set of values. Suppose the
XML file is malformed and contains broken value pairs.
The island grammar allows the malformed value pairs
to be ignored, but it cannot say which item the value
belongs to. This problem can be solved by using bounded
seas.

A bounded sea is an expression that searches for an is-
land in a scope limited by a boundaries. Boundaries are ex-

PPParser subclass: #IndentParser.

IndentParser >>parse: context
| column indentation stack |

" If at the begining of a line"
" consume leading whitespaces "
(context isBeginOfLine) ifFalse: [

" Failure
].
context consumeLeadingWhitespace.

" Save the current column "
column  context stream column.
stack  (context propertyAt: #indent).
indentation  stack top.

(column > indentation) ifTrue: [
stack push: column.
" #indent

].
" Failure

Listing 5. An implementation of IndentParser that
detects a Pyton-like indent token.

PPParser subclass: #DedentParser.

DedentParser >>parse: context
| column referenceIndentation stack |

(context isBeginOfLine) ifFalse: [
" Failure

].
context consumeLeadingWhitespace.
column  context stream column.

" Restore previous column from the "
" stack and compare with current "
stack  (context propertyAt: #indent).
stack pop.
referenceIndentation  stack top.

(column == referenceIndentation) ifTrue
: [

" #dedent
].
" Failure

Listing 6. An implementation of DedentParser that
detect a Python-like dedent token.

suite  (newline indent
statement+

dedent)

indent  IndentParser new
dedent  DedentParser new
newline  #newline asParser
statement  suite / if / for / · · ·

Listing 7. Grammar for a layout-sensitive suite rule.

Paper for ISWT’14 4 2014/8/13



<list>
<item>

<value>a</value >
<value>b <value> <!-- Malformed -->
<value>c</value >

</item>

<item>
<value>d</value >
<value>e</value >

<item>
</list>

Listing 8. An example of a XML file to parse.

start  ’<list >’
item*

’</list >’
item  ’<item >’ valueSea* ’</item’>
valueSea  ⇠value⇠
value  ’<value >’content ’</value >’
content  · · ·

Listing 9. A fault-tolerant XML grammar that uses
bounded seas.

pressions that appear before and after the island. We use the
syntax ⇠island⇠ syntax to create a bounded sea from
island .

To parse a malformed XML file (e.g., the one as in
Listing 8) we define a grammar as in Listing 9. value

from valueSea is always searched between ’<item>’

and ’</item’> . There could be water (e.g., malformed
value , comments, etc.) both before and after value .

Because the bounded sea never crosses ’<item>’ or
’</item>’ the parser exactly knows which item a
value belongs to.

Such a sea behaviour is not context-free. Boundaries
are by definition context-sensitive, because they are basi-
cally the rules used before and after a sea. As a result the
valueSea being called from the rule start from List-

ing 9 fails on input:

‘</item><item><value>a</value>’

But the very same rule valueSea succeeds being called
from R , where R  valueSea .

As it turns out, a bounded sea can be implemented as a
context-sensitive non-terminal using parsing contexts. Pars-
ing contexts are used to keep a stack of invoked rules. Sub-
sequently, a bounded sea can access the stack and use it to
compute its boundaries.

5. Discussion
Albeit very simple and straightforward, the current imple-
mentation of a parsing contexts is guilty of exposing global

state. Presently, parsing contexts behave as global environ-
ments, that can be accessed and modified from any rule. It
is a matter of our further research to implement parsing con-
texts that supports reduced visibility of data.

Our solution sacrifices the linear complexity of Packrat
parsing [11] to unlimited complexity, depending on the im-
plemented extensions. For example, the complexity of the
indentation-sensitive extension is quadratic in the worst case
(at each position we can detect at most n indentation levels,
where n is a size of an input). The average complexity is
probably better, but this is a matter of further research.

6. Related Work
Attribute grammars [16] extend the possibilities of context-
free grammars by introducing attributes and by evaluating
them in the nodes of an abstract-syntax tree. Parsing con-
texts resemble attribute grammars with some important dif-
ferences: (i) parsing contexts do not filter ambiguous results
and are therefore suitable even for non-ambiguous grammars
such as PEGs; (ii) parsing contexts directly use the attributes
to determine a parsing result; and (iii) parsing contexts hide
the attributes, so that a grammar looks looks like a normal
context-free grammar (without attributes). Parsing contexts
still allow for attributes and do not limit their use.

Context-sensitive grammars [1] are primarily used in lin-
guistics, because context-free grammars cannot describe
the phenomena of natural language. Yet, the complexity
(PSPACE [17]), understandability and poor semantic suit-
ability led developers to alternatives. In order to specify
formal properties of a spoken language, Joshi introduced
a mildly context-sensitive grammars [18, 19], that are by
definition parsable in polynomial time. There are mildly
context-sensitive grammars such as tree adjoining grammars
[20], linear context-free rewriting systems [21], or multiple
context-free grammars [22].

In contrast to other indentation-sensitive approaches,
such as Erdweg et al. or Adams [23, 24], our solution a) does
not extend BNF notation and b) does not require generalized
parsing [23]. The solution we present is specific to Python;
the general indentation-sensitive extension is described in a
bachelor’s thesis [25].

7. Conclusion
In this paper we present a simple extension of PetitParser
that allows us to add support for a context sensitive be-
haviour of XML-like grammars, indentation-sensitive gram-
mars and for high-precision and composable island parsing.
We extended an input to a parsing function with a pars-
ing context that can contain information other than an in-
put stream. Parsing contexts are suitable for any top-down
parsing technique, because they support memoization, back-
tracking. Parsing contexts in PetitParser are also extensible
and backward compatible.
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7.1 Future work
In our future work we plan to investigate the capabilities
of parsing-context to capture the most common context-
sensitive features of programming languages. Furthermore,
we plan to investigate a parsing contexts that supports re-
duced visibility of data.
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A. PetitParser
PetitParser [9] is a parsing framework using four method-
ologies: a) Parsing Expression Grammars (PEGs); b) Scan-
nerless Parsers [26] that combine lexical and context-free
syntax into one grammar; c) Parser Combinators that are
building blocks for parsers modeled as a graph of compos-
able objects (they are modular and maintainable, and can
be changed, recomposed, transformed and reflected upon);
d) and Packrat Parsers that improve performance of PEGs
by using memoization.
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A.1 Parsing Expression Grammars
PEGs were first introduced by Ford [6] and the formalism is
closely related to top-down parsing. PEGs are syntactically
similar to CFGs [1], but they have different semantics. The
main semantic difference is that the choice operator in PEG
is ordered — it selects the first successful match — while the
choice operator in CFG is ambiguous. PEGs are composed
using the operators in Table 1.

Operator Description
0 0 Literal string
[] Character class
· Any character
(e) Grouping
e? Optional
e⇤ Zero-or-more repetitions of e
e+ One-or-more repetitions of e
&e And-predicate, does not consume input
!e Not-predicate, does not consume input
e1 e2 Sequence
e1 / e2 Prioritized choice

Table 1. Operators for constructing parsing expressions

A.2 PetitParser in Smalltalk
To create a parsing expression as in Table 1, PetitParser uses
internal DSL. In this paper we will use a DSL as in Table 2.

Each of the operators is implemented as a subclass
of PPParser . PPParser contains an abstract method
parse: that accepts an input as an argument and performs

the parsing and returns a result or a failure.

Operator Description

’abc’ asParser Literal string
#any asParser Any character
#newline asParser A new line
(p) Grouping
p ? Optional p
p * Zero-or-more repetitions
p + One-or-more repetitions of p
p and And-predicate
e not Not-predicate
p1 p2 Sequence
p1 / p2 Prioritized choice

Table 2. Operators for constructing parsing expressions
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Abstract
Smalltalk originally did not have a package manager. Each Smalltalk
implementation defined its own with more or less functionalities.
Since 2010, Monticello/Metacello[Hen09] one package manager is
available for open-source Smalltalks. It allows one to load source
code packages with their dependencies. This package manager does
not have all features we can find in well-known package managers
like those used for the Linux operating system. This paper tries
to identify the missing features and proposes solution to reach a
full-featured package manager. A part of this solution is to repre-
sent packages and dependencies as first-class objects, leading to
the definition of a new dependency model.

Keywords package management system, package manager, de-
pendency

1. Introduction
In this presentation, the package term will be used to depict a
shippable piece of software (something that you can deliver) and
will not be related to system packages nor source code Version
Control Systems (e.g., Monticello), two commonly used package
meanings in Smalltalk. Smalltalk (Gemstone, Pharo, Squeak) did
not have a package manager for years. Indeed, with the image
paradigm, the need of a package manager was not seen as a first
need. With time, the need of a package manager comes up to have
minimal images where you can load only packages you need. In
such situations, a package manager is really important to be able
to load all required packages (including transitive dependencies).
Loading transitive dependencies implies that packages describe
their dependencies.

Since 2010, Metacello provides a solution to manage packages
and their dependencies [BCDL13]. It was a huge effort towards a
modular system where you can load additional application, libraries
and their transitive dependencies. Metacello also evolved year after
year, adding new features. At this time, we have a better compre-
hension of what is working with the Metacello package manager
and what is missing or should be improved. We can also compare
this package manager with other languages. The goal of this paper
is to describe improvements, new functionalities we would like to
have for the next generation package manager. First, we describe
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missing functionalities and then propose a solution for each one.
To conclude, we depict future work in this area.

2. Problem Description
“A package management system, also called package man-
ager, is a collection of software tools to automate the process
of installing, upgrading, configuring, and removing soft-
ware packages [...] in a consistent manner. It typically main-
tains a database of software dependencies and version infor-
mation to prevent software mismatches and missing prereq-
uisites.”, Wikipedia

This explanation of a package management system is more operating-
system oriented but also applies quite well to a programming lan-
guage. From a language point of view, what can you expect from
a package manager? Here is a non-exhaustive list of wished func-
tionalities for a package manager:

• ensuring system coherence: install, update, remove packages
without breaking installed packages. If a conflict occurs, the
package manager should explain the conflict and give the user
the choice on how to solve it,

• first-class dependencies: packages and their dependencies should
be first-class objects, easily accessible from other tools,

• synthetic package descriptions: provide a quick way to create
new packages and express their dependencies through short and
easily understandable descriptions,

• automated load order computation: automated computation of
the load order from the dependency graph.

• knowledge on the system state: a user should be able to query
on installed packages in the system,

• knowledge on available packages: a user should be able to query
on available packages for the system,

• solving review: allow the user to review what will be installed
before actually install packages,

• reproducible loading: once the solving done, the user may want
to reuse this solving to load the same set of packages on identi-
cal systems (e.g, on the N production servers),

• conditional loading support: filter out packages that cannot be
installed in the system (e.g. requires a specific version of the
system),

• complex constraints support: declaring a dependency to a fixed
version is not enough. A package manager has to allow more
constraints like a version range (between version 1.2 and ver-
sion 1.6, greater than 2.0) or boolean expressions,



• support of update strategies: these strategies will enables au-
tomatic updates of compatible packages (e.g., security or bug
fixes),

• independence from Version Control Systems: Dependency de-
scriptions should refers to versionned packages and not source
code artifacts.

We can see that functionalities expected from a package manage-
ment system for a programming language are quite the same as
functionalities expected for an operating system.

To come back to Metacello, we present an overview of the
functionalities offered by package management systems for open-
source Smalltalk and some other well-known package management
systems.

Functionnality Metacello Maven apt

ensuring system coherence Partial1 Partial2 Yes
first-class dependencies No No No
synthetic package descriptions No Partial3 Yes
automated load order computation No Yes Yes
knowledge on the system state No Yes Yes
knowledge on available packages No Partial4 Yes
solving review Yes Yes Yes
reproducible loading Partial 5 Partial6 Yes
conditional loading support Yes N/A No7

complex constraints support No8 Yes Yes
support of update strategies No9 Yes Yes
independance from VCS No Yes Yes

Table 1. Package management systems functionalities

In the following subsections, we focus on functionalities not
yet covered by Metacello, the only tool available for open-source
Smalltalks.

2.1 Ensuring system coherence
When installing a new library (or updating an already loaded li-
brary) into an image, there is no guarentee that already installed
libraries will continue to work. There is no record of which con-
figurations are already installed in the image. Configurations can
be collected in the image but it is impossible to know if a partic-
ular configuration has been loaded and which version was loaded.
The record of such information is very important to allow tools and
users to query about installed software. This information is also
primordial to install new libraries.

Let’s take an example: the package A is already installed in the
system and depends on B v1.1. We want to install the package D
that has a dependency to B v1.2. There is a conflict: we cannot have
both B v1.1 and B v2.2 in the image. At the present time, if we

1 Metacello provides hooks to execute code on upgrade or downgrade of an
installed package
2 Maven takes decisions that may lead to an inconsistent system. However,
the user can force this decisions.
3 XML is verbose
4 Maven has a central repository but does not use it to propose packages.
5 The use of symbolic versions leads to unreproducible loadings
6 not possible by using SNAPSHOT dependencies
7 There is one specific central repository per platform
8 Only fixed versions supported
9 Symbolic versions may be used for updates but without warranty on the
backward compatibility.

request to install D, B v1.2 will be loaded in the image and A will
be broken! This should not happen. Installing a new package into
the system should take into account what is currently loaded and
what may break! The same problem applies when trying to update
an installed package into the system.

2.2 First-class dependencies
Packages and their dependencies should be first-class objects. The
package management system as well as other tools need a quick
access to these information. First-class dependencies will facili-
tate the work needed to go to a modular system, open doors to
new tools (e.g. automatic update of dependencies information from
the source code). In the current package manager used by open-
sources Smalltalk, three kind of dependencies 10 are used to express
software dependencies: dependency referring to a project (piece of
code with a dedicated description/configuration), to a package and
to a group that is a collection of projects, packages or groups. These
notions are very close and it is not always easy to understand the
subtle differences between these concepts. It will increase the read-
ability to merge them in a common concept. First-class dependen-
cies will also enable the knowledge on the system state (installed
packages). With first-class dependencies, we can also add more in-
formation on packages, i.e., more meta-data. Currently available
meta-data, stored in Configurations, are:
• the package version author,
• the package version description,
• the package version timestamp,
• and the package version blessing: the tag used to manage sym-

bolic versions (development, release).

We would like to add useful information such as the project license,
a brief project description, the project website url, the project in-
ception year, a link to the issue management system, a link to the
mailing lists, the list of developers/contributors, etc. Other tools (or
users) can use such information to choose the package fitting their
needs. For example, Maven pom files11 provide a lot of meta-data
for each project.
All this information on packages needs to be loadable easily with-
out loading the package itself and without installing any new code
in the system. Indeed, it is very strange to modify the image state by
loading new classes (Configurations) to only read some information
on packages. It may also be dangerous if the loaded code overrides
some existing code in the image. Storing meta-data in methods of
a class allows versioning of meta-data only if you use Monticello
as Version Control System, and not with any other VCS. VCS are
able to version any kind of data: source code, images, text, binaries.
Moreover, you can keep each version of your meta-data easily by
publishing them to a central package repository, even with Monti-
cello.

2.3 Synthetic package descriptions
Package descriptions are currently cluttered with a lot of specific
dependencies hard to handle: platform specific packages and test
packages.

2.3.1 Management of platform specific packages
Currently platform-specific code goes into a dedicated package.
Then, you still need to tell Metacello which package to load ac-
cording to the targeted platform. It is done with the for:do: message
as shown in the following snippet.

10 See DeepIntoPharo (http://deepintopharo.com), Managing projects with
Metacello chapter
11 http://maven.apache.org/pom.html



1 spec
2 group: ’Core’
3 with: #(’CoolBrowser-Core’ ’CoolBrowser-Platform’)
4 spec
5 for: #gemstone
6 do: [ spec
7 package: ’CoolBrowser-Platform’
8 with: ’CoolBrowser-PlatformGemstone’ ]
9 spec

10 for: #pharo
11 do: [ spec
12 package: ’CoolBrowser-Platform’
13 with: ’CoolBrowser-PlatformPharo’ ]

Listing 1. Platform packages management example

This information is redundant and clutters the package dependen-
cies description. It should be simplified. You should just say that
CoolBrowser-Core requires a platform specific package. The pack-
age manager should be smart enough to choose a package fitting the
platform requirements.

2.3.2 Management of test packages
Tests are also often put in a dedicated package to allow the loading
of a library with or without tests. Metacello does not provide an
option to load (or not) test packages. It implies that the developer
has to provide a way to load the code with or without tests by
himself in the configuration. Here, again, the package dependencies
description will be cluttered by groups defined to load tests or not.
To summarize, current package dependencies description is far too
verbose and should be simplified.

2.4 Automated load order computation
In current package descriptions, the developer needs to explic-
itly specify which packages should be loaded before the described
package. Indeed, the whole dependency graph may contains cycles.
With cycles, it is difficult to know which package to load before the
others. Most cycles are introduced by the proliferation of specific
packages: tests packages, platform-specific packages. The defini-
tion of the packages load order is delegated to the developer. It is
more work to maintain a consistent load order and also more er-
ror prone. It would be good that the package management system
gets this preoccupation to free the developer mind and to lighten
the package descriptions.

2.5 Complex constraints and update strategies support
Metacello is a first step towards a better modularity. It enables to
load quite easily packages and their dependencies. To achieve that,
you need to specify which version of a package you need. Actually,
Metacello supports only one kind of constraint: exact version match
and allows only one constraint per package. It means you are locked
to a specific package version. If you want to use a more recent
version, you need to update your configuration. It is not totally
true because Metacello allows the use of symbolic versions like
#development, #stable or #release. These symbolic versions
are useful to easily get the latest stable version of a package or
to get the development version. The use of symbolic versions is
not restricted to these use cases. For example, you can specify
that your package relies on the latest stable version of another
package. It introduces some flexibility but not enough. We need
to express more constraints on package dependencies like: =1.0,
=1.0 or 1.1, <2.0, >2.0 and <2.5, etc. More constraints and more
constraint kinds will offer new possibilities but there is a price
to pay for that: constraints solving will become more complex
and time consuming. With only one possible path to follow (each
constraint is solved to a specific version and only this one), the

current solving can use an ad-hoc algorithm and be quite efficient.
With the introduction of non-fixed dependency version constraints,
the number of possible pathes explodes and we need an efficient
algorithm. Solving a constraint satisfaction problem on a finite
domain is an NP-complete problem in general. It implies to use
a dedicated solver for this problem. To introduce automated update
strategies, we need to know which versions are only bug fixes
versions, which versions are backward compatible and which one
are not backward compatible. This information is currently not
available for packages.

2.6 Reproducible loading
A package management system has several responsibilities:

• allow the user to express requests (installation, update, removal)
on packages,

• find a solution (if any) to the user request,
• and apply this solution.

The solution to a user request, e.g. a package installation, is called
a dependency resolution. This dependency resolution should be se-
rializable and reusable. Indeed, the solving can be made one time
and the solving result can be used many times in possibly many
images. That way, we ensure that the exact same set of packages
will be loaded into different images. It is very convenient, for ex-
ample, to ensure that packages installed in the production image(s)
will be exactly the same packages deployed in the development im-
age. Such a solution also allows a decoupling between the solving
part and the loading part. You can imagine a minimal image with
no solver but able to load already solved dependency resolutions.

2.7 Independence from Version Control Systems
A big drawback with the current description of dependencies, is
that descriptions are coupled with the legacy Smalltalk Version
Control System: Monticello12. Indeed, to express dependencies,
you need to reference Monticello zip files (mcz files).

1 spec
2 package: ’CoolBrowser-Core’
3 with: ’CoolBrowser-Core-BobJones.20’

Listing 2. Example of explicit reference to a VCS

In the previous example, CoolBrowser-Core-BobJones.20 refers
to the CoolBrowser-Core-BobJones.20.mcz Monticello file. With
the emergence of the git13 Version Control System (VCS), a new
way to express dependencies comes up allowing the developer to
declare dependencies without specifying a specific version of these
dependencies. In fact, the default dependency version is the head of
the Version Control System but it can be set by specifying a specific
repository URL like bellow:

1 github://demarey/metacello-work:1c8c138a7be...

Listing 3. URL used to refer to a specific version in a git repository

Despite the fact that several VCS are supported (git, Monticello, flat
files), current package descriptions are closely tied to VCS: in num-
bered versions, you have to explicitly reference a particular artefact
of the supported VCS, in general an mcz file name. We need to find
a way to decouple the dependency description, and overall pack-
ages distribution from the VCS. We can also ask ourselves Why is
it coupled? Pharo does not deliver binary packages (even if it is the

12 http://www.wiresong.ca/monticello/
13 http://git-scm.com/



case in professional environments such as VisualWorks [MLW05])
but rather packages with the source code. It can explain why there is
a coupling between the package distribution and the Version Con-
trol System, but it should not be coupled! Source code versions are
not the same concept as deliverable package versions.

3. Proposed Solution
This section will expose solutions for each problem exposed above.
Even if each problem is seen as an individual case, all solutions put
together describe a coherent approach.

3.1 Ensuring system coherence with installed package
information

The solution to avoid broken libraries after installing/updating a
software is very simple: we need to keep information about in-
stalled packages / software into the image. With a good object
model of these dependencies, other tools will be able to use this
information to ensure the coherence of the system. The simple
proposition is to create a Package Registry with the responsibil-
ity to register all packages loaded into the image, and of course all
meta-information on these packages. This registry will be used by
other tools to ask for installed software, but also to get input for
dependency solving.

For example, we can imagine different strategies to solve a
software installation. Indeed, a sofware installation request can
be translated to a constraint satisfaction problem. One strategy to
solve a software installation could be to minimize the number of
updated packages and the number of new packages to install. To
implement this strategy, you need to know what is already installed
in your system. It takes more importance when you need to install
a software without breaking those already installed. If we use the
example exposed below: package A is already installed in the
system and depends on B v1.1. I want to install the package D that
has a dependency to B v1.2., if A can only use the version 1.1 of the
package B, we need to add this constraint before starting to solve
dependencies. The package registry will help to find the constraints
we need to add to the dependency solving to keep the system in a
coherent state, i.e., with all packages / software working.

Figure 1. Package registry

We can imagine that such package information can be stored
in the package Manifest (a package manifest is data class storing
information about rule false positives) and extracted on demand
to be published on package catalog and other external package
description systems.

3.2 First-class dependencies
Having first-class dependencies in the image implies to extract the
core concepts manipulated by software dependencies. Is a depen-
dency to a package of your project the same kind of a dependency
to a package outside your project? A package represents a piece
of software you want to distribute or use. This piece of software
may be something you developed or something coming from out-
side your project. There is not really a difference. Then, how to
represent a group of pieces of software, i.e. a group of packages?
A group is just a meta-package: a meta-package does not contain
actual software, it is an empty package that simply depends on
other packages, thus forming a group. With packages and meta-

Figure 2. MetaPackage representation

packages, we have an uniform representation of dependencies.

Instances of the model introduced below describe packages with
information on dependencies but also other meta-data. Package
descriptions will be represented with objects in the image but we
also need to store them with the source code. To achieve that, we
need to serialize and also, deserialize these objects. Package meta-
data needs to be easily accessible without being obliged to load the
package itself or to install new source code in the image. To reach
this goal, we need to define a serialization format for these meta-
data. This format should be easily loadable and saved into/from the
image and, if possible, easily human-readable. A good solution is
to serialize packages meta-data with STON14, a Smalltalk variant
of the well-known JSON standard. STON is quite readable, close
to a standard and provides automatic serialization/deserialization of
objects.

Here is an example of what could be a serialization of a package
metadata:

1 Package {
2 #name : ’Seaside’,
3 #version : 3.1.0,
4 #description : ’The framework for developing
5 sophisticated web applications in Smalltalk.’,
6 #website : ’http://www.seaside.st’,
7 #dependencies : {
8 ’Grease’ : 1.1,
9 ’Seaside-Core’ : 3.1.0,

10 ’Seaside-Canvas’ : 3.1.0,
11 ’Seaside-Session’ : 3.1.0,
12 ’Seaside-Component’ : 3.1.0,
13 ’Seaside-RenderLoop’ : 3.1.0,
14 ’Seaside-Tools-Core’ : 3.1.0,
15 ’Seaside-Flow’ : 3.1.0,
16 ’Seaside-Environment’ : 3.1.0,
17 ’Seaside-Widgets’ : 3.1.0
18 }
19 }

Listing 4. New serialization example of a package metadata

As package meta-data are outside the image, we need to find a
way to store it with Smalltalk source code for legacy VCS (e.g.,
Monticello). The easiest solution would be to include the STON
file into the mcz file that is a zip file but this solution will imply to
transfer the whole mcz file to only get the metadata. It may be slow
with a low bandwidth. Another option could be the creation of a
specific Monticello package to hold these meta-data. The specific
mcz will contain nothing but the STON file and Monticello meta-
data. This way, the solution is still compatible with Monticello and
can retrieve packages meta-data quite efficiently. However having
empty package from a programmer point of view can be confusing.

14 https://github.com/svenvc/ston/blob/master/ston-paper.md



Managing two packages for a package and its description is not
optimal.

3.3 Synthetic package descriptions
With first-class dependencies, we have a nice dependency model in
the image but we still need to find a way to handle platform-specific
packages. The Debian operating system introduced the notion of
virtual packages15 for its package management system.

A virtual package is a generic name that applies to any one
of a group of packages, all of which provide similar basic
functionality. For example, both the tin and trn programs
are news readers, and should therefore satisfy any depen-
dency of a program that required a news reader on a system,
in order to work or to be useful. They are therefore both said
to provide the virtual package called news-reader.

A virtual package is some kind of under-specified contract. Indeed,
the contract only relies on the virtual package name and has no
description. Some packages require this contract and some others
provide it. Virtual packages should be used carefully because there
is no verification that a package really implements the contract
needed. There may also be some naming comflicts if appropriate
names are not chosen. Beside that, virtual packages offer great
features such as a loose coupling between packages. The package
manager can choose the best package providing a virtual package
according to the specific user request and environment. This low
coupling avoids to predict all potential cases in the package de-
scription.
The idea is to use virtual packages to manage platform-specific
packages. If a package Foo needs platform-specific packages,
then it should declare a dependency to the Foo-Platform virtual
package. The package implementor then needs to create platform-
specific packages (e.g., Foo-Pharo, Foo-Gemstone), each provid-
ing the Foo-Platform virtual package. At the solving time, the
package manager will search in the repository for all packages im-
plementing the required virtual package. Of course, a virtual pack-
age will also have a version to choose an appropriate version of the
virtual package. To work properly, packages (and as a consequence
virtual packages) need to define requirements. Those requirements
will be checked to see if a package can be installed on a given plat-
form (e.g., Foo-Pharo requires the Pharo platform). Requirements
already exist with Metacello and are named platformAttributes.
By checking package requirements, the package manager will see
that the package Foo-Gemstone cannot be installed on Pharo, and
then the Foo-Pharo will be selected. The package description be-
comes shorter and cleaner.

Here is an example of a legacy description:

1 spec for: #common do: [
2 spec
3 package: ’Foo’ with: ’Foo-Platform’;
4 group: ’default’ with: #(’Foo’ ’Foo-Platform’) ].
5 spec for: #gemstome do: [
6 spec
7 package: ’Foo-Platform’ with: ’Foo-Gemstone’].
8 spec for: #pharo do: [
9 spec

10 package: ’Foo-Platform’ with: ’Foo-Pharo’].

Listing 5. Legacy description for platform-specific packages

The Foo package becomes:

1 spec

15 http://www.debian.org/doc/manuals/debian-faq/ch-pkg basics.en.html

2 requires: ’Foo-Platform’.

Listing 6. Foo package description

The platform-specific package becomes:

1 spec
2 provides: ’Foo-Platform’.

Listing 7. Foo-Pharo and Foo-Gemstone package description

Figure 3. Virtual package modelization

With the unification of dependency description and the introduction
of virtual packages, descriptions become smaller and easier to read,
write or maintain.

To handle properly test dependencies (but also other kind of
dependencies like development dependencies), we propose to de-
fine a scope to dependencies. A dependency may be needed to run
tests but not at runtime, another could only be useful to develop
the package. A dependency scope is in fact a kind of dependency.
We propose to define a core dependency class and specialized ver-
sions of this dependency: runtime dependency, test dependency and
development dependency.

Figure 4. Dependency scopes

3.4 Automated load order
The biggest problem to enable automated load order computing by
the package management system is the presence of cycles in the
dependency graph. The analysis of several projects such as Seaside
[DRS+10] showed that most cycles involve platform-specific pack-
ages. If we omit these dependencies, it is hard to find a cycle in a
dependency graph. The solution proposed is to consider platform-
specific packages as part of the core package.

Let’s take an example: there is a Foo package. If we find a
Foo-Tests package, we should consider that this package is part



of the Foo package. The platform-specific package is in a different
package for technical reasons (selective loading) but conceptually,
the platform-specific and the core packages represent the same
package. At the loading time, this conceptual representation will
be translated into a batch loading of these packages. Indeed, they
depend on each other, and then should be loaded at the same time.
With this approach cycles should be removed from the dependency
graph. If there are still some cycles, it may highlight a design
problem.

3.5 Complex constraints solving and update strategies
support

To be able to express more sophisticated constraints than ‘I depend
on the package foo in the exact version 1.1’, we need to revisit
the dependency description format to allow more expressivity. For
example, if I need a version of B at least equals to the version
1.1, I will write B >1.1. Such constraints will imply to solve NP-
complete problems and thus to use proper solvers. To ease package
updates and packages descriptions, we can also take advantage
of the semantic versioning16. It is nothing else that a convention
to follow to number versions of packages. By following these
conventions, we will be able to perform automatic updates like
bug fixes updates, security issues update because version numbers
will give us information on backward compatibility. For example,
v1.2.4 will be compatible with v1.2.3, v1.2.1 and v1.2.0 (bug fixes
versions) but also with the v1.* versions. On the other side, it
will not be compatible with the v2.* versions. More sophisticated
constraints and the adoption of a versioning strategy: semantic
versioning will open new doors to dependency management. It
should lead to less package versions, and at least less package
description. It is also important to notice that tools can help to
ensure the coherence of the versioning strategy (e.g., forbid the use
of minor/patches version if an API change is detected).

3.6 Reproducible loading
To enable reproducible loading, we need to serialize dependency
resolution. Such a file is named a lock file in the Composer depen-
dency manager (for the PHP language). Composer writes the list of
the exact versions it will install into a composer.lock file. It locks
the project (package) to those specific versions. This mechanism is
useful to save resolution time and to be sure to install exactly the
same set of packages on the same machine or on other machines. It
is similar to the Snapshotcello behavior which freezes the versions.
It also enables the installation of packages into an image that does
not have a solver.

Figure 5. Solver and Loader decoupling

16 http://semver.org/

As you can see on the class diagram, a Solver will take as input
a dependency that is in fact a constraint or a set of constraints on
one or more packages. The result of a solving is a LoadInstructions
object having an ordered collection of all packages (with their
specific versions) to load. This object may be serialized (or not)
and then given to the package loader to actually perform the load.
We propose to use the STON format to serialize LoadInstructions
objects. The STON format will be already used to store package
meta-information.

3.7 Independence from Version Control Systems
The best way to decouple package distribution from the source
code / VCS is to set up a package repository where packages
will be published. Published packages will have an independent
version numbering. Many languages adopted this approach Java
with the Maven central repository17, Ruby with RubyGems18, Perl
with CPAN19, Python with PyPI - the Python Package Index20, PHP
with Packagist21, JavaScript with Bower22, . . . This approach allows
a great decoupling but also open doors for added-value features:

• a central place for the community to share artifacts,
• a central place to search for existing libraries,
• a central place to find (meta-)information on libraries.

For such a service, a preoccupation may be the duplication of
the source code (in the VCS and in the central repository) and the
storage needed. Both issues can be solved easily: there is no need to
duplicate data. We can simply publish a description of the package
version in the package repository. This description will contain all
information needed to get sources directly from any VCS.

4. Conclusion
In this paper, we looked at the package management system chal-
lenges. We proposed different solutions to address these problems:

• have first-class objects for package dependencies in the system,
• use virtual packages to handle the complexity of platform-

specific code,
• set up a repository dedicated to host packages and decoupled

from Version Control Systems,
• support complex constraints support,
• adopt the semantic versioning.

The adoption of these propositions will increase the solving
complexity23 but, on another side, will offer a lot of facilities and
new functionalities to the developer. Package descriptions will be
easier to write and maintain, we will be able to do automatic
updates, check the system coherence, and last but not least get a
central repository for Pharo/Gemstone libraries. It will enhance the

17 http://search.maven.org
18 https://rubygems.org/
19 https://metacpan.org/
20 https://pypi.python.org/pypi
21 https://packagist.org/
22 http://bower.io/search/
23 when a user request a package installation or update, the package man-
ager needs to find a solution (a set of package versions to install) fitting
expressed constraints (direct dependencies constraints) and transitive con-
straints (constraints expressed on transitive dependencies, i.e. dependencies
of dependencies of the package to install). If constraints are not strong, the
numbre of pathes to explore by the solver is huge and it is more complex to
find a solution in a reasonnable time.



share and reuse of libraries by giving visibility on these projects.
This model is adopted by a wide range of other languages.

Further work will target complex dependencies solving. There
are two solutions: implement a new solver, re-using or not existing
pieces, or use an existing solver. The last option is tempting be-
cause we will benefit for years of experience of specialists. Roberto
Di Cosmo (Université de Paris VII) led an European project named
Mancoosi24. The Mancoosi project defined a common dependency
description format for Linux distributions: CUDF25. CUDF de-
scriptions can be used as input data for many solvers. It would be
a good idea to see if our dependency model could be converted to
CUDF and thus, be able to use solvers already used to solve Linux
dependencies. This work just has been done by the OCAML com-
munity with OPAM26.
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Abstract

Nowadays, general public applications or specific infor-
mation systems must be able to run on mobile platforms as
well as on conventional platforms. Because developers have
to deal with mobile platform specificities, this constraint si-
gnificantly lessen the benefits of agile methods and as a
consequence impacts on the application development cost.
Many research works aim at reducing the development cost.
Prototyping as well as automatic code generation have been
investigated by the community. In this article, we present
Dali, a framework that uses both Smalltalk and Model Dri-
ven Engineering. With Dali, an application model can be de-
signed for multiple platforms and interpreted before code
generation. An execution platform is modelled as a set of
constraints over a context. These constraints can affect the
presentation of the Graphical User-Interface (GUI) but also
the overall behaviour of an application.

Keywords cross-platform design, agile development, mo-
del driven engineering, smalltalk

1. Introduction

Nowadays, general public applications or specific infor-
mation systems are often able to run on mobile platforms as
well as on conventional platforms.

This recent requirement has impacts on the development
model, the tools and the development infrastructure. While
the cost of purchasing applications decreases, the cost of
development increases.

Many research works aim at reducing the development
cost. Prototyping is one solution. It can be used to adjust an
application before its development for the target platform.
In this context, the right capabilities of Smalltalk regarding
agile development and prototyping are recognized. Using
Smalltak, a prototype can be early tested. However, we are
not aware of a Smalltalk infrastructure able to generically
deal with different execution platforms for the same applica-
tion prototype. Moreover, producing the final application to

the target platform may involve a significant cost. To over-
come this overhead, Model Driven Engineering (MDE) and
automatic code generation are often used : stemming from
specific models, all or part of the application is automatically
generated for the target platform. Produced applications are
validated by running them on the target platform. The advan-
tage of this method is to have a single, standard meta-model
for all application variants. However, the development cycle
is still expensive because the applications have to be tested
and validated after code generation.

In this paper, we propose a development method and a
framework called Dali based on Smalltalk for early conside-
ration of different execution platforms. With Dali, an appli-
cation model can be used for several platforms and interpre-
ted before code generation. An execution platform is model-
led as a set of constraints over a context. These constraints
can affect the presentation of the Graphical User-Interface
(GUI) but also the overall behaviour of an application.

The contributions described in this article are :

— we present the Dali framework and an agile develop-
ment method for early consideration of different exe-
cution platforms ;

— we show how an application can be tested before code
generation thanks to the interpretation of application
models while considering the different execution plat-
forms envisaged for the application.

The remainder of this paper is organized as follows.
Chapter 2 explains the problems addressed and existing so-
lutions. Chapter 3 presents our solution called Dali. Chap-
ter 4 presents an illustrative case. Chapter 5 presents Dali
meta-models. Chapter 6 explains how Dali is implemented
in Pharo. The article ends with relative works and a conclu-
sion.



2. Problems and state of the Art

Our concern is about developing small applications, espe-
cially information systems that can be characterized as fol-
lows :

1. development is physically centralized on one site ;
2. implementation needs a small number of developers

(between 1 and 3) ;
3. targeted system is not critical, i.e. malfunctioning is

not likely to endanger people life or health and does
not involve significant financial loss to the develop-
ment company ;

4. the number of screen views is low (between 10 and
20).

These assumptions are in favor of the application of agile
methods [TFR05]. Indeed, according to the manifesto for
agile software development [BBB+09], some fundamental
principles of agile methods are :

— the priority is to meet the needs ; the customer is part
of the development team and he operates continuously
for validation tasks ;

— to measure the progress of the project regarding the
working system and to deliver frequent releases of the
system under development ;

— to maintain the simplicity of developments [Hic11].

Considering these principles include notably the follo-
wing practices [TFR05] :

— development granularity is small ; the code is built
iteratively and incrementally and iterations are short ;
the expected gain is the early detection and correction
of malfunctions ;

— prototypes are developed and tests performed early in
the development cycle in relation to the needs expres-
sed by the user ; verification, validation and prototy-
ping activities can be conducted continuously at each
iteration.

These practices are consistent with agile development.
However, because of the growing importance of mobile plat-
forms, applications shall be developed for desktops and si-
multaneously adapted to smartphones and tablets.

The idea is similar to that of usage contexts [SeTC99]
about the execution platform, the user and the environment.
For an application, considering numerous possible contexts
involves more complex developments and thus a loss of
agility.

2.1 Parallel versions

To support multi-target platforms, for business with limi-
ted resources, one direct solution is to maintain different ver-
sions, one for each execution platform. Figure 1 depicts such
a solution. For each target platform, a part of the application

code is written according to the target platform specific li-
brary.

FIGURE 1. Maintaining several versions for the same ap-
plication

Object-oriented languages can be effectively used to re-
fine abstractions and consider specific contexts such as the
features of an execution platform. The solution is to deve-
lop a reference version which is then adapted to different
platforms envisaged by specialization. Aspect-oriented pro-
gramming [KLM+97] can provide additional solutions to
adapt an application to different contexts.

However, maintaining multiple parallel versions for mul-
tiple execution platforms is a very heavy task and makes the
continuous validation and tests very difficult. This kind of
method can lead to spaghetti code with very negative impact
on the evolutivity and on the maintainability of the applica-
tion code.

2.2 Model-Driven Engineering and code generation

Model-Driven Engineering (MDE) proposes to solve
these problems by model transformation and code genera-
tion.

As an example, the Model-Driven Architecture (MDA)
[Obj00] approach aims at developing a set of models, lin-
ked by transformations. These transformations allow to start
from a Computation Independent Model (CIM) to a Plat-
form Independent Model (PIM) and finally a final Platform
Specific Model (PSM). The PSM represents the concrete im-
plementation of the system. MDE helps to limit specific and
non-automated developments for each context : stemming
from a cohesive set of models, the different versions can be
generated.

The MDE improves the development method because a
target platform can be modelled separately. As depicted in
Figure 2, from an application model (PIM in MDA) together
with a specific platform model, a target platform application
model (PSM) is produced by model transformation. Then,
parts of the code of the application is automatically genera-
ted from it.



The main advantage is that the target platform are speci-
fically modelled and that the same application model can be
shared for multiple target platforms.

FIGURE 2. The MDE approach

However, depending on the target platform, one must go
through a phase of code generation and code compilation
before you can execute all or part of the application. These
steps are time consuming and the impact of model changes
cannot be immediately observed. The causal connection bet-
ween the models and the generated artefacts is lost because
of the code generation step [RFBLO01]. But, to remain
agile, a development method must favour short development
cycles. Thus, MDE does not help in limiting the loss of agi-
lity.

2.3 Emulators

Some development environments provide emulators for
target platforms. Emulation relies on the execution of a vir-
tual device supporting the application that will be later de-
ployed. This is, for instance, the solution proposed by the
SDK Android [And].

This solution allows to test an application for multiple si-
milar targets without having the physical devices. But, the
application execution by the emulator can only occur after
the code generation and its compilation. In addition, the ap-
plication code is specific to one development environment
and one kind of emulator. As depicted in Figure 3, this solu-
tion implies code generation and deployment steps. In fact,
this solution is very similar to the development of parallel
versions but with the facility brought by emulators. Because
of the code generation step and of the additional deployment
steps, the problem of lack of agility is not resolved by emula-
tion. Moreover, emulating can be very slow and time consu-
ming.

FIGURE 3. Emulation approach

2.4 Common interpreters

A common interpreter can be used for all target execution
platforms. Two solutions are possible. The first is depicted
by the top part of Figure 4. The interpreter is a separate tool
and the application code is the same whatever the platform.
This solution is file based. As an example, a web browser can
be used as an interpreter of a Javascript program embedded
in an HTML page. As another example, one can use Java and
its interpreter. The main advantages are that the application
code is reusable and web development and deployment is
made easier.

Development environments and dynamic languages
[Jod10, RG09] promote agile applications development in
a uniform and comprehensive way. The second solution is
depicted by the bottom part of Figure 4. The interpreter and
the development environment are integrated. This is the case
of Smalltalk. This solution is image based. As additional
advantages, an image based solution favours short develop-
ment cycle and direct feedbacks. Indeed, with dynamic lan-
guages, the causal connection is preserved because any mo-
dification of a model can be immediately observed.

FIGURE 4. Interpretation approach

However, it is necessary to have up-to-date virtual ma-
chines for all target platforms. Interpreters can be made avai-
lable by vendors with specific libraries. This might imply



greater difficulties to maintain code reusability. In addition,
the use of interpreters can make it difficult the integration
of native widgets and more generally using primitive sys-
tem. Finally, as for emulation, the interpreting process can
be time consuming.

3. Dali solution

To improve the development of applications for different
execution platforms while allowing us to have native ver-
sions, our solution is blended. We propose to use Smalltalk
as a tuning and as a development environment and to use
MDE to produce target applications for execution platforms.

Maintaining the causal connection between the models
and the executed application can resolve significantly the
lack of agility. To maintain it, a solution is to execute an
application in and by the development environment.

FIGURE 5. The Dali approach

Figure 5 shows the Dali approach. The first goal is to
maximize the agility of the development process by the use
of a Smalltalk solution to design, prototype and validate
an application for several target platform. With Dali, an
application model (the business part) must be associated
with a specific platform model to be interpreted. The same
application model is used for several platforms.

The deployed application can be the Smalltalk one but
it might be desirable to directly benefit from native libraries
and from fast running. For that purpose, an MDE approach is
used. With Dali, after a tuning process, a native application
can be automatically generated from the application model
together with the chosen target platform model.

The remainder of this paper presents the Dali solution
regarding the design on validation steps in Pharo.

4. An illustrative example

Let us take for example the display of a contact list in
an address book. Figure 6 shows two possible displays for a
contact list. The displayed information as well as the beha-

viour are different. The left window is adapted to a smart-
phone and the right window to a desktop computer. On a
computer screen, it is possible to view all contact informa-
tion. On a mobile device, the size is limited. This constraint
implies that only the name and the e-mail are presented. A
button is added to access the contact details.

FIGURE 6. Two possible displays of a contact list

We do have the same information system but with two
different presentations. We also have a behaviour variation
because the mobile phone version requires the use of an
additional button.

The solution implemented with Dali let us use the same
application model and to express the constraints of the mo-
bile phone. Throughout this article, the presentation of the
framework will use this example.

5. The Dali framework

To achieve a satisfactory level of agility in considering
specific execution platforms, one solution is to allow the de-
veloper to model the various platforms and provide an exe-
cution of the application within the development environ-
ment. The idea is to converge to a suitable solution before
code generation.

The remainder of this section presents the meta-model
and the main framework components. We depict features re-
lated to the description of business models : specific beha-
viour, presentation and constraints of execution platforms.

5.1 The Dali meta-model

Dali was inspired by self-descriptive object-oriented
meta-models such as EMOF [Gro04] and ECore [SBPM09],
especially for the description of the structural aspects of an
object. In fact, as in EMOF and ECore, Dali is based on a
Classifier (or Class) concept, on Operation and on Property
definitions. Dali is also inspired from Magritte [RDK07],
from its syntax and from its concept of accessors strategy.
Moreover, Dali allows the description of the behaviour and
of GUI. Specific requirements related to the target platforms
can be used to constrain any Dali description element. The
business behaviour is expressed in Smalltalk.



FIGURE 7. Main classes of the Dali meta-model

Figure 7 presents the three main Dali abstractions : DA-
Description, DAProperty and DABehavior.

A DADescription can be related to a Class in
EMOF [Gro04]. A DADescription handles a set of DAPro-
perty and a set of DABehavior. A DADescription is also a
composite : it can contain child descriptions.

A DAProperty corresponds to an object instance variable
or a Property in EMOF [Gro04]. As a kind of value holder,
at runtime, each DAProperty stores the value of the related
property. A DAStyle is a special property used to describe
graphic features of a DAWidget.

A DABehavior might be a business operation (DAOpera-
tion) as in EMOF [Gro04] but also a more specific behaviour
such as a reaction (DAReaction), or a binding (DABinding).

FIGURE 8. Contact class (left), its Dali representation (cen-
ter) and the simulated instance (right)

Figure 8 shows on the left an UML element for a Contact
class with a field #name and a method #sendEmail. The
role of a DADescription is twofold : on one side, it describes
the structure and the behaviour of the related class, on the
other side, it is directly used at runtime to manipulate the
value of the properties and to invoke the object behaviour.
In the center of Figure 8, is depicted how the Contact class
is described with Dali with a DADescription instance. The
name field is described by a DAProperty instance and the
#sendEmail operation is described by a DAOperation ins-
tance. On the right, is shown a simulated Contact instance
at runtime. The actual name is stored in the related DAPro-
perty. The actual #sendEmail method is invoked through
the related DAOperation.

5.2 The behaviour

Dali uses Smalltalk to describe business behaviour.
Smalltalk was chosen because the business behaviour can
be directly interpreted within the development environment

and because it let us the possibility to manipulate the abstract
syntax tree (AST) in order to translate the business behaviour
to other languages. All business behaviours are manipulated
by Dali through instances of DAOperation. In fact, a DAOpe-
ration references the name af the method which implements
the related business behaviour.

DABinding and DAReaction are more specific. They are
implemented as Observers [GHJV95] and describe interac-
tions between children of a DADescription.

A DAReaction specifies an association between a DAO-
peration and an event. For instance, a DAReaction can be
used to trigger a DAOperation as a reaction of an incoming
event. Such event can be emitted by a DAWidget.

A DABinding binds several instances of DAProperty to-
gether by a source / destination relationship (Data Binding)
or bidirectional relationship (Two Way Data Binding). When
the source is changed, the destination property is automati-
cally updated (and vice versa if the binding is bidirectional).
For instance, a DABinding can be used to bind a property of
a domain object to a property of a widget.

FIGURE 9. Using of a DAReaction

Figure 9 presents an operation triggered as an event reac-
tion. A DAReaction listens to an event coming from a source
object an is able to trigger an associated operation.

FIGURE 10. Using of a DABinding

Figure 10 depicts how a DABinding can be used to auto-
matically chain property updates. When a property value is
changed, an event is emitted by the DAProperty instance. As
a reaction, the DABinding updates its target property value.

5.3 The widgets

In Dali, widgets and associated layout are kinds of DA-
Description. Widgets are described as instances of DAWid-



get. Each widget has its own set of styles which impacts on
the look of the user interface and its own set of managed
events which impacts its behaviour. A composition of wid-
gets is specified by a DALayout which is owned by a DAPa-
nel.

A DAWidget is only a logical description which needs to
be tied to a native Smalltalk widget at runtime when the
application is interpreted. In order to relate a DAWidget to
a Smalltalk widget, a DAAdapter must be specified.

The set of DAWidget are defined according to well known
standards such as W3C CSS2 [BLLJ08] for the graphical
properties (DAStyle) and W3C DOM [HKL+13] for events
(DAEvent). These standards provides the consistency of the
API which can cover most of the needs of a GUI description.

5.4 The target platforms modeling

In order to consider execution platforms during the appli-
cation development, we need models to represent them.

FIGURE 11. The environment composition

As depicted in Figure 11, Dali includes the concept of
environment. An environment is reified as a DAEnvironment
instance. The role of an environment is threefold, it contains
the model of the execution platform (DAPlatform), the requi-
rements of the application (DARequirementRepository) and
specifies how the development environment must be custo-
med during the simulation (DAEnvAdaptation). Dali makes
it possible to simulate and test the same application for seve-
ral execution platforms. The same set of DADescription can
be simulated with different actual presentations.

A DAPlatform describes a particular target execution
platform. A DARequirementRepository contains all DARe-
quirement used to constrain an application. A DARequire-
ment consists in a set of conditions that are checked over
a target DAPlatform. At runtime, Dali objects structure are
set-up according to the related set of DARequirement. A DA-
Requirement can have a parent requirement. The parent re-
lation is used by Dali to order requirements evaluation, a
parent requirement being evaluated before a child one.

Regarding the illustrative example, for the mobile device,
a set of DARequirement is declared to constrain the size
of the panel. Moreover, each row is constraint to present a

button instead of showing the complete card data. This kind
of constraint is also expressed with a DARequirement.

In order to run an application within the development en-
vironment, one must declare the actual set of widgets to use
(e.g Spec widgets or Morphic widgets). For that purpose, a
DAEnvironment is set-up with a set of adapters. The purpose
of an adapter is to bind a platform widget with a correspon-
ding DAWidget. An adapter establishes a mediation between
a platform widget and a Dali widget. The mediation consists
in providing a concrete look but also in interpreting events
and the widget behaviour.

The set of DAAdapter is stored within a DAEnvAdaption
instance. As an example, a DAEnvAdaption can be specified
for Spec widgets [VRDF12] and another one to bind DA-
Widget instances directly to Morphic widgets.

6. Dali within Pharo

Dali is implemented in Pharo. The idea is to use Pharo as
a classical development environment to design and to early
validate applications for multiple target execution platforms
but with enhanced agile validation capabilities.

After explanations about the fundamental aspects of Dali
regarding DADescription implementation, the reminder of
this chapter describes how our illustrative example is imple-
mented in Pharo.

6.1 Fundamentals

All objects manipulated through Dali are instances of
a subclass of DADescription. Then, a model is made of a
set of DADescription. It embeds a set of business object
descriptions but also the related widget descriptions.

In a Dali description, objects are referenced by a relative
identifier (RID). An RID is unique in the scope of a DADes-
cription and for all the DAObject of a same kind : properties,
behaviours and descriptions.

A DADescription is made of a list of properties. But, in
order to take into account several possible structures and se-
veral possible behaviours, the list of properties of a DADes-
cription is not fixed. It depends on the related environment. It
means that the actual representation of a concept may differ
depending on a given environment.

Each property can be either a data property (e.g. a Contact
name) or a behaviour (e.g. the sendMail function). All pro-
perties of a DADescription are managed as instances of DA-
Property or of DABehavior. It means that a data property
is not managed and used through an instance variable but
through the corresponding DAProperty instance. It means
also that a behaviour is not directly coded within a method
and, at run-time, is not invoked by a direct message sent but
indirectly through a DABehavior instanddce.



The methods that implement a particular business object
behaviour is still implemented as a method of its class (a
subclass of DADescription) so that self is preserved at in-
vocation time. Such a method is referenced and indirectly
invoked by the corresponding DAOperation.

6.2 Configuring an environment

A Dali description structure and behaviour depend on a
environment. Thus, an environment must be primarily set-up
before instantiating any DADescription. The setting of the
environment shown in Figure 12 corresponds to the DAEn-
vironment used in the illustrative example.

1 DAPlateform
2

3 yourself
4
5 DARequirement
6

7 true yourself
8
9 DARequirement

10

11

12

13

14 yourself
15
16 DARequirementRepository
17

18 yourself
19
20 DAEnvAdaptation
21

22 DAText
23 DAMorphTextAdapter yourself
24
25 DAEnvironment
26

27

28 yourself
29
30

FIGURE 12. Setting and using an environment

An environment associates a platform, some require-
ments and an adaptation :

— platform : A DAPlateform stores characteristics of a
particular logical platform. All characteristics are sto-
red into a private dictionary so that any characteristic
can be freely defined. In Figure 12, an instance of DA-
Plateform is configured to represent a platform with
display size characteristics. Regarding our illustrative
example, the mobile platform can be described simply
by the size of its display.

— requirements : A DARequirement consists in the spe-
cification of a constraint over the platform characte-
ristics. A DARequirement is named and is configured
with a block. The block implements a constraint over
the platform. The constraint block receives the current
platform as argument and contains a boolean expres-
sion. Finally, all requirements are made available to

an environment through a DARequirementRepository.
Regarding our example :
— The block of the requirement named #common

always returns true, meaning that this requirement
is always valid regardless of the platform. Given
that the actual list of properties or of behaviours of
a DADescription is built by evaluating the require-
ments, this kind of requirement is used to declare
that a property or a behaviour is always present in
a description.

— The requirement named #smallScreen

constrains the size of the display. This requi-
rement is used to select the layout to use and
which widgets to display.

— adaptation : A DAEnvAdaption specifies which adap-
ters are used. In our example, we use Morphic as the
underlying presentation layer. The adaptation is made
of a DAMorphTextAdapter which binds DAText and
TextMorph, the Morphic class that is used to edit or
display text.

The last line of Figure 12 shows the instantiation of an
application configured for a given platform. The environ-
ment to be used by the application is made available thanks
to the #withinDo : message sent. The application is ac-
tually built in the block passed as argument. Internally, the
current environment is made available to the application by
using the stack context (thisContext). Because of the requi-
rement #smallScreen, the resulting application is adapted
to a small mobile device as shown in the left part of Figure 6.

6.3 Declaring a business object

The purpose of our illustrative example is to manipulate a
list of contacts. A contact is a business object specified by a
subclass of DADescription. Figure 13 shows the declaration
of the Contact class.

1 DADescription
2
3
4 �
5
6

7

8 ^DAProperty
9 yourself

FIGURE 13. Declaring a business object class

As mentioned in Chapter 6.1, business object properties
are not handled through instance variables. Indeed, in Fi-
gure 13 the instanceV ariableNames string is empty even
if a Contact has properties. In fact, any instance variable can
be added for internal or private use. But, the business pro-
perties must be declared with the help of dedicated methods.

As an example, the Contact name property is declared
by the declareName method. The property declaration is



based on a specific annotation (pragma in Pharo). This an-
notation is used by Dali to identify the methods to evaluate
in order to build the actual list of properties. The property
selection is achieved according to the constraints that are de-
clared for the current environment. Such a method is a kind
of factory method that returns a configured DAProperty.

Thus, with the help of its annotation, the declareName

method declares that the property named #name is added
if the requirement named #common is met. As shown in
Figure 12, the #common requirement is always met be-
cause its constraint block returns true. As a consequence,
the #name property is always added to the Contact des-
cription whatever the environment.

1

2

3 ^DAProperty
4 yourself

FIGURE 14. Declaring a property with multiple require-
ments

In some cases, using a single requirement in the annota-
tion might lead to duplicate requirement code. For instance,
suppose that we want to use the GPS service on a smart-
phone. A field named location would be required to store
the GPS data. As a consequence, for this property, two re-
quirements must be met : the application runs on the small
screen device and the GPS service is available. Figure 14
shows how multiple requirements can be declared with the
annotation.

At runtime, a property is used as a value holder. In order
to get or set the value of a property, accessors must be
implemented. Regarding the #name property, we might
declare its accessors as shown in Figure 15. Notice that the
name of the method is meaningful because it is considered
by Dali as the name of the corresponding property. The
property instance retrieval is achieved by the thisProperty

message sent.

1

2 ^self
3
4

5 self

FIGURE 15. Declaring a property accessors

6.4 Declaring a widget

As explained in Chapter 6, a DAWidget is also a DADes-
cription. As a consequence, declaring a widget property and
its accessors is achieved with the same syntax as for the bu-
siness objects. A widget is specified through a subclass of
DAWidget.

Figure 16 shows the declaration of the class ContactItem-
Panel that is the description of the presentation of a contact
in the list of contacts shown in Figure 6. A ContactItemPa-
nel is specified by a subclass of DAPanel which can handle
sub-widgets embedded in a layout.

1 DAPanel
2
3
4 �
5
6

7

8 ^DAProperty
9 yourself

10
11

12

13 ^DAText
14

15 yourself

FIGURE 16. Declaring a widget class

As for a property, a sub-widget can be declared by a
dedicated method. As shown in Figure 16, the DAText named
nameText is declared by the declareNameText method.
This method is also used to configure the property fontSize

of the DAText instance.

6.5 Adding a layout

Figure 17 shows the declaration of a row layout referen-
cing widgets of the ContactItemPanel. The way a layout is
declared with Dali is very near from Spec [VRDF12]. A
layout consists simply in a tree of sub-widget references that
can be visited without any adaptation and drawing.

1

2

3 ^DARow
4

5

6

7

8

9 yourself

FIGURE 17. Adding a layout

6.6 Specifying multiple representations

As a solution to multiple representations of the same bu-
siness object, a Dali description contains all the possible pro-
perties regardless of the actual environment. When a descrip-
tion is bound to an environment, the subset of properties that
meet the environment requirements is computed.



FIGURE 18. Focus on the presentation of a contact

Figure 18 shows the same element of a contact list but
with two different presentations. The top one is for desk-
top whereas the bottom one is for a mobile platform. This
difference is implemented with two possible layouts in the
ContactItemPanel class. The desktop version is shown in Fi-
gure 17. For the mobile version shown in Figure 19, one
must declare an additional button and use the dali annota-
tion to bind the declarations with the #smallSreen requi-
rement.

1

2

3 ^DARow
4

5 yourself
6
7

8

9 ^DAButton
10

11 yourself

FIGURE 19. Adapting widget with requirements

At instantiation time, the two applicant layouts may be
selected. Indeed, the #common requirement is always met
whatever the platform. Dali resolves this selection issue by
using the parent relation between requirements. As shown
in Figure 12, the #smallScreen requirement is a child of
the #common requirement. As a consequence, it is always
evaluated after the #common requirement and then, in the
context of a mobile platform, only the mobile layout is
selected and actually instantiated.

6.7 Adding behaviours

As introduced in Chapter 5.2, a behaviour can be either a
DAOperation or a DABinding or a DAReaction. The same
declaration syntax is used as for properties, widgets and
layouts.

6.7.1 Adding an operation

An operation consists in the declaration of a method to
invoke. The name of the method serves as a key to lookup
the actual method. Figure 20 shows the declaration of a
DAOperation and the associated method. At runtime, this
operation invocation results in the #openDetails message
sent to the receiver.

1

2

3 ^DAOperation
4 yourself
5
6

7
8 self
9

FIGURE 20. Declaring an operation

6.7.2 Adding a binding

Figure 21 shows the declaration of a DABinding. The
DABinding establishes a link between the property #name

of the Contact and the property #text of the child wid-
get #nameText. Thanks to this binding, when the contact
name is changed, the #text property of the widget is auto-
matically updated.

1

2

3 ^DABinding
4

5
6

7

8
9

10

11 yourself

FIGURE 21. Declaring a binding

A binding relies on accessors for the source and the tar-
get properties. Figure 22 shows the hierarchy of accessors
implemented as a Decorator. An accessor can be straight-
forward or chained. This feature is borrowed from Ma-
gritte [Ren06].

FIGURE 22. Hierarchy of accessors in Dali

6.7.3 Adding a reaction

A reaction consists in the declaration of an association
between an event and an operation. Figure 23 shows the de-
claration of a DAReaction which listens the event DAClick fi-
red by the button named #detailsButton. When the button
is clicked, the operation named #openDetails is invoked.



1

2

3 ^DAReaction
4

5 DAClick
6

7 yourself

FIGURE 23. Declaring a reaction

6.8 More on styles and events

The public protocol of a widget consists mainly in imple-
menting its styles and managing events.

Dali is a modelling layer that must be adapted to spe-
cific environments for graphic rendering. To remain adap-
table to any underlying framework, Dali does not provide its
own underlying graphical implementation and widget pro-
tocols are not defined according to a specific one (Morphic,
Spec,...). Instead, the goal is to rely on normalized protocols.
For that purpose, we have chosen to be compliant with two
main standards : W3C CSS2 [BLLJ08] for styles and W3C
DOM [HKL+13] for events.

6.8.1 Styles

Styles management can be confusing. Each style can be
used by several widgets but sharing of styles can not rely
on widget hierarchy definition. As an example, button and
text are represented in Dali by DAButton and DAText. Their
common ancestor is DAWidget. These two widget kinds can
manage a text. Then, these widget kinds must implement
text styles management. Unfortunately, the text styles ma-
nagement is not available at the level of DAWidget. Thus,
we need a clear way to define styles and to allow their sha-
ring independently of the widget hierarchy. For that purpose,
as shown in Figure 24, Dali uses traits to declare available
styles.

1 DAWidget DARectangle
2 DATWithBackground DATWithBorder
3
4 DARectangle DAButton
5 DATWithText
6
7 DAWidget DAText
8 DATWithText DATWithBgColor
9

FIGURE 24. The text and the button widgets sharing the
same text style definition

A style trait covers the definition of a standard subset of
CSS2 [BLLJ08] styles. As shown in Figure 25, in such a
trait, each style implementation is made of three methods :
the first is for the style instantiation and the two others are for
the style value accessing. As an example, The DATWithText
trait shown in Figure 25 is compliant with subset of CSS
about text specification.

1 DATWithText
2

3 ^DAStyle
4 DAFontStyle yourself
5
6 DATWithText
7 ^self
8
9 DATWithText

10 ^self

FIGURE 25. DATWithFont trait snippet

6.8.2 Events

The DOM [HKL+13] specification define different kind
of events that can be fired by graphical elements. Dali pro-
vide the DAWidgetEvent hierarchy which is compliant with
this specification. To take advantage of announcement me-
chanism in Pharo, DAWidgetEvent is a subclass of Announ-
cement. Once more, traits are used to make available the
event protocols at the widget level. The implementation of
an event, in such a trait, is made of two declarations of a
DAOperation with their related methods. The first method
fires a specific event, the second method declare a reaction
between this event and an operation. Figure 26 shows the
first one.

1 DATWithClickEvent
2

3 ^DAOperation yourself
4
5 DATWithClickEvent
6 self DAClick self

FIGURE 26. DATWithClickEvent trait snippet

6.9 Visiting a model

As a development environment, Dali permits early vali-
dation of applications through their direct interpretation. But
the ultimate goal is to produce an adapted version of an ap-
plication for a specific execution platform. The primary re-
quirement for such a goal is to be able to visit a description.
Moreover, a description model must be visitable even it is
not adapted.

To visit a model instance, an environment must be confi-
gured as described in Chapter 6.2. This environment repre-
sents the target platform. In its current state, Dali allows such
visits as presented in Figure 27. This example shows a visit
invocation in order to generate a CSS representation. The
resulting CSS is shown in Figure 28.

1

2 DACssExporter
3

FIGURE 27. Exporting CSS from a widget



1 �
2

3 �
4

5 � �
6

7 �
8

9 � � � �
10 � � �

FIGURE 28. Generated CSS snippet

7. Related Work

AppliDE [QDDD11] is a software framework that is ba-
sed on Software Product Lines (SPL) [PBL05]. SPL lets the
user define characteristics diagrams for each products family
also called features. AppliDE uses SPL in association with
MDE to construct a single model of products family. Fea-
tures are used to specify the variability between different
products. This model is used to automate the derivation of
applications for several target platforms. AppliDE describes
the behaviour by high-level services (GPS, mailing,...) and
manipulates them as features. The business behaviour is im-
plemented at the target execution platform level. The gene-
rated code is linked with the business behaviour after code
generation. AppliDE uses a static builder for GUI aspects
of an application. AppliDE is code generation based. It does
not provide any interpreting facility.

CAPucine [Par11] uses also SPLs but with Aspect-
oriented programming to consider context variations at run-
time. It is based on a variability model to define product fa-
milies and their variability points. An aspect model is used
at design time to generate code and is used at runtime for re-
configure an application according to the events fired within
the execution context. CAPucine is also based on code gene-
ration. The behaviour is represented at a high abstraction le-
vel, as components or services. Compared to AppliDE, CA-
Pucine does not include any elements to automate the deve-
lopment of the GUI.

SPL features are similar to the Dali notion of require-
ments. But, the composition of an application is made at
high level of abstraction (service level). Whereas, in Dali,
a composition of an application is made at the class level.

The works around the plasticity [Cal10] and the multimo-
dality [CCT+03] of GUI take advantage of MDA [Obj00]
architecture to abstract and generalize concepts without spe-
cialize an application directly to some context. But to al-
lows reconfiguration at runtime, the target platforms must
include a specific framework. The Comets [CDCD05] ap-
proach brings widgets which can react at runtime to adapt
their presentation according to the variation of the runtime
context. These Comets are implemented in each target plat-

form and their models are used at design time to specify GUI
composition.

In Dali, a platform is modelled at design time and is made
to constrain objects structure. But, Dali does not provide any
dynamic reconfiguration mechanism after code generation.
Thus, the meta-model is not represented at runtime in the
target platform.

Magritte [RDK07] is a framework to describe proper-
ties of a domain object. The properties description consist
in a separate meta-model that can be manipulated apart. It
is auto-descriptive. Magritte uses mementos to cache model
state and manage model changes as transactions. These me-
mentos can be also used as a kind of value holder.

Dali uses also a meta-model to describe object properties.
In Dali, a description is directly used as a business object :
its properties serve as value holders and for the invocation of
the behaviour.

Spec [VRDF12] is inspired by the VisualWorks UI buil-
der and is implemented in the Pharo environment. It is used
to specify and build GUI in Pharo. Spec uses a logical widget
model with a specific API and an adaptation layer to bind its
widget model to Morphic widgets. The widget composition
is implemented with layouts relying on the command pat-
tern. Each layout element exists as a command that is eva-
luated when the layout is adapted to Morphic. No visiting
mechanism is provided for the widget hierarchy.

A part of Dali is dedicated to GUI description. As
in Spec, it implements widget composition, layouts and
an adaptation layer. Dali widgets are auto-descriptive and
can be reconfigured at design time according to platform
constraints. Moreover, Dali style and events are compliant
with W3C [BLLJ08, HKL+13].

8. Conclusion and further work

This paper deals with the problem of agile application
development for multiple execution platforms. Nowadays,
application vendors must provide multi-platform products.
Often, existing desktop applications have to be adapted
or rewritten to be compliant with mobile platform. This
constraint impacts the cost of application development even
with agile technologies.

This paper presents a solution named Dali which benefits
from Smalltalk together with the Model Driven Engineering
to allow multi-platform application design. With Dali, an
application can dynamically take into account a platform
description and can be interpreted to allow agile design and
validation. When the application is mature enough, the idea
is to finally generate a native target application.

In its current state, Dali provides a framework that can be
used to design desktop as well as mobile simple applications.



The current set of available widgets and related adapters re-
main to be enriched. A Dali model can be visited. It provides
the mean to actually generate target platform code. But, ge-
nerating a real application remains to be experimented.

At the design level, two perspectives are under conside-
ration. The first one concerns the property definitions that
could benefit from Slots [VBLN11]. Indeed, a property des-
cription is a specific instance variable with particular mana-
gement rules.

In Dali, target platform description consists in a set of
properties. A pragma based mechanism is used to select the
actual set of business object properties according to specific
environment requirements. The pragma mechanism implies
a class based definition of all possible properties. This part
of the framework could benefit from an Aspect oriented
mechanism. Indeed, the definition of properties available
in a given environment could be designed with the help of
Aspects. We plan to explore the use of PHANtom [Fab12]
for that purpose.
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Abstract
Merging a change often leads to the question of knowing what
are the dependencies to other changes that should be merged too
to obtain a working system. This question also arises with code
history trackers – Code history trackers are tools that react to what
the developer do by creating first-class objects that represent the
change made to the system. In this paper, we evaluate the capacity
of different code history trackers to represent, also as first-class
objects, the dependencies between those changes. We also present
a representation for dependencies that works with the event model
of Epicea, a fine-grained and incremental code history tracker.

Keywords change propagation, IDE, history, dependency analy-
sis, software evolution

1. Introduction
Software systems evolve in response to change in their functional
requirements. These changes made through time to the source code
of software systems is what we call their code history. We can keep
track of this evolution process through the usage of Version Control
Systems (VCSs) such as Git1.

Since software engineering is part of software evolution [RL07],
a development environment that represents changes as first-class
entities that can be referenced, queried and passed along in a pro-
gram [EVC+07] is fundamental for a change-oriented engineer-
ing approach. This cannot be accomplished using the mainstream
VCSs in use today for the following reasons:

• The semantic information of the changes made to the system is
scattered in a large amount of text, so tracking entities involves
parsing several versions of the entire system.

• Several independent fixes and features can be introduced in one
single commit, making it hard to differentiate them.

• The time information of each change is reduced to the time
when each commit is performed, so all information about the
exact sequence of changes which led to these differences is lost.

To minimize the effort for sharing and merging code through a
VCS, some best practices have been established:

• Commit small, related, self-contained change sets. This is what
is usually known as an atomic commit2.

• Usage of a descriptive commit message.
• Commit regularly.

Following these best practices requires a lot of discipline. As a
result, committing unrelated changes happens regularly in software

1 http://git-scm.com/
2 http://en.wikipedia.org/wiki/Atomic_commit

development. This means that either the tools are used do not allow
to follow the best practices or the effort to follow the aforemen-
tioned best practices is too high for developers.

To reduce this effort, a new generation of tools (that we call
code history trackers) was born. These tools are conceptually event-
based: they react to what the developers do by creating first-class
objects that represent the changes made to the system. Remark-
ably Smalltalk change tracking systems (ChangeSorter) is one the
elder code history trackers and it predates mainstream versioning
systems.

However, we consider that none of the current code history
trackers has a minimal set of desired features to reduce the effort
required to do an atomic commit. The most important of these
features is the ability to detect dependencies between changes made
to the system, or what we call dependency tracking.

In general, the re-assembly of changes has been historically sup-
ported through a feature called cherry-picking. The support for
cherry picking enables programmers to extract incremental im-
provements that are spread over a set of many changes. Consider for
example that a task has involved a refactoring that the programmer
must manage and share as a separate improvement. Programmers
can first have a look at the list of all versions to identify both the
individual changes that constitute the refactoring and the version
from which the main task started.

Over time, it becomes increasingly difficult and tedious for
a developer to determine whether a change from another branch
or fork can benefit the system, which makes it difficult and time
consuming. This difficulty is emphasized by the lack of support for
the analysis of dependency between changes. Indeed it is rare that
a change happens in isolation.

There is a need for tools that can detect dependencies automat-
ically, so the programmer doesn’t need to remember these depen-
dencies or to identify and select them manually.

The contributions of this paper are:

• An evaluation of current history tracking tools for Smalltalk
and how they facilitate the dependency tracking to reduce the
human effort needed to follow the described best practices.

• The definition of one model and the building of a dependency
tracking mechanism on top of it, focusing on simplicity, to
assist the programmer in the process of re-assembling changes.
Given the dynamic nature of Smalltalk, the approach is not
completely accurate for message sends. And it is not fully
automatic, since the developer has always the chance to edit
the suggestions of the tool.



Table 1. Evaluation summary
System First-class objects Incremental Dependencies Refactors Exploration

ChangeSet Partial 3 7 7 ChangeSorter
Ring 3 7 3 7 Jet

Epicea 3 3 7 3 Log Browser
CoExist 3 3 7 7 Version Bar

2. Related work
In this section we describe three existing tools for code history
tracking and we evaluate how they assist the developer to facilitate
the best practices listed earlier.

2.1 Evaluation criteria
To evaluate the existing tools we consider the following questions:

• Are changes modelled as first-class objects?
• Is it incremental? Is it possible to analyze a single change or

does it need to create a full history log? Incrementality makes
the semantic representation of the model easier to mantain.

• Are dependencies between changes modelled?
• Are high-level refactorings modelled?
• Does the solution provides a flexible way to explore the list of

changes?

2.2 The Smalltalk ChangeSorter/ChangeSet
The traditional Smalltalk ChangeSet log is a reliable mechanism to
log the source modifications immediately after any editing opera-
tion happens on an image [Gol84]. It may be used as a recovery
tool by backtracing to the most recent non/erroneous state of the
image and reapplying changes listed by the ChangeList tool.

However, the changes are written to a log file as executable
statements and only classes and methods are modelled as first-class
objects. Additions and removals of attributes can only be detected
by comparing different versions of the program. These records have
no information about high-level changes as refactorings and mix
source management with the events that make the system evolve
from one state to another. As a result, not all events can be recorded,
the granularity of the events is too coarse and the exploration of the
change list made with the ChangeSorter is cumbersome and error-
prone.

Considering these limited the representation of changes, is no
surprise that the model does not include a representation for depen-
dencies between changes.

2.3 Ring
Ring [UGDD12] is a unified source code meta-model that:

• Has a common API with the Runtime and Structural Smalltalk
model.

• Represents every program entity as a first-class object. Unlike
the standard Smalltalk model, it can represent variables as ob-
jects instead of strings.

• Serves as the underlying meta-model for the history and change
meta-models.

The history meta-model, called RingH, models source code en-
tities such as packages, classes, methods and atributes as well as
the relationships between such entities such as class inheritance,
method call, class reference and attribute access. The history mod-
els are extracted from the source code history contained within ver-
sioning repositories.

RingC is the change and dependency meta-model, which uses
the information contained within the RingH model and creates sets
of changes (instances of class RGChange) for each snapshot re-
trieved from the repository. These sets are called deltas. When
there is a dependency between two RGChange objects, the RingC
model creates a RGChangeDependency that represents it. This
dependency can happen within changes in the same delta or be-
tween changes belonging to different deltas. If a reference to a
non-existing object is introduced in a change, that change has an
external dependency that is modelled with a stub class.

Even when the object model improves the granularity of the
events recorded, the Ring approach is still unable to detect the most
high-level events (i.e: refactorings).

Jet [UG12] is a semi-automated tool built on top of RingC that
offers a characterization of the changes and dependencies within
a stream of changes. It is not incremental, since it creates a full
history log by extracting information from repositories instead of
reacting in real-time to the changes made by the developer. Because
of this, the process of importing the repository data to generate the
history and then extract the changes and their dependencies can be
time consuming for big projects.

2.4 CoExist
CoExist [STCH12] is a tool for Squeak/Smalltalk that relies on
the idea of continuous versioning: any change made to the system
triggers the creation of a new version storing the change as well as a
complete snapshot of the current system. Unlike a traditional VCS
that store the source code changes in separate files, these snapshots
are internal data structures that store the state of the system in a
particular point in time.

The user can go back and forth between versions using the
Version Bar and create additional working environments to inspect,
modify and debug versions of interest. The system also allows to
run tests continuously, to collect results for every individual version
and to run a potentially new test on previously created program
versions.

Despite these features not found in the other tools, CoExist
is not free of limitations. Some classes cannot be versioned and
switching between versions requires a restart of the application
under development. It also lacks support for direct references to
class objects and its model does not include dependencies between
changes.

2.5 Epicea
Epicea [DCD13]3 is a code history tracker built on top of the Ring
core that represents the changes in entities with events. Each one
of these events contains two snapshots representing how the entity
was before and after the change. This capacity of reacting to the
events as they happen provides the exact sequence of changes that
led to the differences between each pair of snapshots. It is also
easier to maintain a semantic representation of the model, requiring
code parsing only at the method level.

The event model has some trade-offs between accuracy and
simplicity. For example every time Epicea detects a change in a

3 http://smalltalkhub.com/#!/~MartinDias/Epicea



Figure 1. Object model

class, it is unable to distinguish between an addition or removal
of an instance variable and the addition or removal of a class
variable. This is not a major drawback for its current features, but
it is something that will have to be considered if we want to add
dependency tracking to its feature set.

Epicea writes each event immediately to disk using one Ombu
file per session instead of a single ChangeSet file, making easier
the recovery of the exact sequence of changes that originated the
differences between the snapshots of the affected entity. It also can
export the log entries to a ChangeSet file (only for events supported
by the ChangeSet format).

Unlike the standard ChangeSet model and the complete Ring
model, Epicea events can represent high-level refactorings. This
simple event-based model replaces the RingH layer of the Ring
ecosystem but there is no model to represent dependencies between
the changes triggered by those events.

Also the Log Browser makes easy to go back and forward
in time using the events logged, leading to an easier exploratory
development.

3. Additions to the Epicea object model
Our objective is to create an object model to represent dependencies
between the existing change model of Epicea. In this section we
define what a dependency is, how to represent a dependency with
an object and how to extract the dependencies from each changed
entity in the system.

Figure 2. Dependency in a method creation

A change is always applied to a subject. Creational changes are
changes which have as subject a new entity that they produce. In
this case, a change c1 is said to depend on a change c2 if that is
the creational change of the subject of c1 [Figure 2]. For example,
methods can only be added to existing classes.

Also, the source code of m can contain references to other
entities and messages sent [Figure 3]. The entities referenced in
the source code of m must exist to ensure its compilation and
proper execution. Because of this, we need to parse the source code
associated to every change.

Therefore, our dependency object [Figure 1] will be composed
of three references to entities:

1. The subject of change or entity to be modified.
2. Optionally, a class holder. This is the class that holds the subject

of change. It will be nil for classes, since they don’t need a
holder.

3. Optionally, a set of dependencies extracted from the source
code. If the event is a class addition or any entity removal, it
will be empty.

This set of dependencies is generated from the source code of
methods. In the next subsections we explore the different depen-
dencies that we can find.

Figure 3. Dependencies extracted from a method

3.1 Types of dependencies
We have three types of dependencies between entity changes. In all
cases, parsing the code associated to the entity is needed.

• Class hierarchy dependencies: for each change in a class, which
can be a change in a method or in the class definition, the
superclass must exist. The same happens when self is called
from the code of the method that is the subject of change.



Figure 4. Dependencies of a class addition

• Reference dependencies: they are references to temporary, in-
stance and class variables in the source code of any method.
Also references to classes.

• Message sends: messages sent in the source code of any method
or expression evaluation. Since Smalltalk is dynamically-typed,
in absence of type information and presence of polymorphism,
there is a need to provide very fine-grained information about
messages sent to find dependencies in an accurate way.

It may happen that a dependency for a change is located in
a different package. We call this an external dependency. And if
the dependency doesn’t exist in the system, we call it a missing
dependency. Both cases will have their first-class object in our
model.

1 Object subclass: #AbstractTimeZone
2 instanceVariableNames: ’’
3 classVariableNames: ’’
4 poolDictionaries: ’ChronologyConstants’
5 category: ’Kernel-Chronology’

Listing 1. Class definition example

Listing 1 shows the code of the class AbstractTimeZone. This
class inherits from Object, uses the pool dictionary Chronology-
Constants and is located in the category Kernel-Chronology. So
we can extract 3 dependencies from this definition [Figure 4]:

1. The class Object must be defined.
2. The shared pool ChronologyConstants must be defined. This

also means that the class SharedPool must be defined.
3. The package Kernel-Chronology must be defined.

1 Trait named: #TClass
2 uses: TBehaviorCategorization
3 category: ’Traits-Kernel-Traits’

Listing 2. Trait definition example

Trait definitions are similar. The dependencies in Listing 2 are
the Trait class, the TBehaviorCategorization trait and the cate-
gory.

3.1.1 Message sends
If a message is sent inside the code of a method, we can look
for the methods that potentially will receive the call (i.e., dynamic
dispatch). This is what we know as a candidate set [DAB+11].

Since candidate sets can contain false positives, we categorize
message sends as follows:

• Messages sent to self: all candidates for the call need to be in the
hierarchy tree of the class in which the method is defined. This
case can lead to false positives when the method is declared in
many classes that belong to same hierarchy.

• Messages sent to super: this corresponds to the super calls
within a method, which is bound statically. So it must be defined
in a direct or indirect superclass in which the method is defined.

• Messages sent to classes: The receiver of this message is a class
reference.

• Unknown sends: the call of the receiver is unknown, so the
candidate set consists of all methods with the given selector.
This case can lead to false positives.

1 AbstractTimeZone >> printOn: aStream
2 super printOn: aStream.
3 aStream
4 nextPut: $(;
5 nextPutAll: self abbreviation;
6 nextPut: $).

Listing 3. Method definition example

Listing 3 shows the code of method printOn: from the class
AbstractTimeZone. We can extract many dependencies from this
change [Figure 5]:

1. First of all, we need the class AbstractTimeZone to add the
method.

2. At line 2, we have the message printOn: sent to super, so this
depends on Object � printOn: or ProtoObject � printOn:
according to the class hierarchy of AbstractTimeZone.

3. At line 5, we have a message send to self. So this depends on a
method called abbreviation that can be on any member of the
current class hierarchy.

4. Starting at line 3, we have many messages sents to a parameter.
Since we don’t know to which class the parameter belongs, this
is an unknown invocation. It’s candidate set are all the methods
called nextPut: and nextPutAll:.

Listing 4 shows the code of AnnouncementSpy � buildList.
Since we are sending the message new to the class PluggableList-
Morph, we are sure that this class and its method must be defined.
We could assume the result of this message is an instance of Plug-
gableListMorph, but since we cannot be sure that new returns an



Figure 5. Dependencies of a method addition

instance of the class, we’re forced to look for all the implementors
of the message.

1 buildList
2 ^ (PluggableListMorph new)
3 on: self
4 list: #announcements
5 selected: #index
6 changeSelected: #index:
7 menu: #buildMenu:
8 keystroke: nil.

Listing 4. Example of a message sent to a class

3.2 Unknown message sends with self
Let’s suppose we added the method addAll: to the class Collection
[Listing 5]:

1 addAll: aCollection
2 aCollection do: [:each | self add: each].
3 ^ aCollection

Listing 5. Unknown message sends with self

Among others, we have a dependency with add:. It’s code is
shown on Listing 6.

1 add: newObject
2 self subclassResponsibility

Listing 6. Role of subclassResponsibility

This one has a dependency with subclassResponsibility. But
this is not enough to make addAll: work. We should include all the
add: messages in the Collection hierarchy. This is a case where
a dependency found in a message send to self can have false
positives.

3.2.1 Reference dependencies
Let’s illustrate how to handle variable references by looking at
the code of this method in the class OrderedIdentityDictionary
[Listing 7].

We have messages sent to self and super, that we already cov-
ered. We have an unknown send for the message key, that has more
13 implementors in a standard Pharo 3.0 4 image. We also have an
unknown sned for ifFlase:, but in this case there are only 3 imple-
mentors restricted in the Boolean class hierarchy.

1 add: anAssociation
2 (self includesKey: anAssociation key)
3 ifFalse: [ keys add: anAssociation key ].
4 ^ super add: anAssociation

Listing 7. Reference dependency example

We also had a reference to a variable called keys. There is no
temporary variable declared in the source code of the method, so
it must be an instance or class variable. We said in Section 2.3
that Epicea cannot distinguish between diferent kinds of variable
changes in a class definition. This means that we’ll have a RGClass-
Definition entity that contains a class or instance variable as a de-
pendency. Now a question is raised: which class definition is the
one that contains this variable?

1 atRandom: aGenerator
2 | rand index |
3

4 self emptyCheck.
5 rand := aGenerator nextInt: self size.
6 index := 1.
7 self do: [:each |
8 index = rand ifTrue: [^each].
9 index := index + 1].

10 ^ self errorEmptyCollection

Listing 8. Local variable reference

The answer is that this variable should be defined in the last
event containing a class definition for A, otherwise the code would
not compile (unless the compiler decides to skip compiling for
some reason). The worst case would be when the class was created
before the installation of Epicea. if this happens, it will scan the full
log only to find that the dependency is missing.

4 http://pharo.org/



In listing 8 we have an example of temporary references, ex-
tracted from the method atRandom: of the class Collection.

Since rand and index are defined in the same method, there is
no dependency. We could think that there is a dependency with the
method itself, but compilation is not possible without the declara-
tion of these two variables.

3.3 Modification and removal of entities
Modification of entities work in a similar way to what we already
explained. The only difference is that modification events have two
Ring entities (the subject of change and the result of the change)
instead of only the subject. The process of dependency extraction
is the same, but in this case is the code of the result of the change
that will be parsed.

For deletions, the only events we consider as dependencies are
deletions of entities held by a deleted holder. For example, if a
method m from class C was deleted and then class C was also
deleted. The deletion of m will be added to the candidate set of
the deletion of C.

4. Implementation details
4.1 Anatomy of an Ombu entry
An entry in an Ombu file has a content, which can be any object,
and a dictionary of tags. In the specific case of Epicea, the content
is a change event [Figure 6]. The tag dictionary is used to store
metadata like the author and the time of the change.

Another thing that is stored in the tag dictionary is the prior
reference. Each entry has a reference to the prior change and this is
the way the changes are linked as a list. We can use this mechanism
to persist the dependency information for each entry.

As a second step, it is also desirable to be able to get the entries
that contain the subject of change for each one of the dependencies.

Figure 6. Anatomy of an Ombu entry

4.2 Retrieval of class holders
Epicea events can contain one or two RGObjects. Addition and re-
moval of entries contain the new entity, while modifications contain
the subject and the result. We defined the class holder in our model
but it doesn’t exist as a first-class object in the event. In these cases,
the event only knows the name of the holding class. Therefore, we
have to look in the log for the event of the creation of the holding
class.

4.3 Retrieval of entries containing subjects of change
Dependencies are defined between affected entities: classes, meth-
ods and so on. Once the dependencies for an affected entity have

been established, we have to find the events that affected those en-
tities.

For example, let’s suppose that we modified the definition of a
class A. A new EpClassModification event object will be created
and it will contain two instances of RGClassDefinition: one that
represents the old class definition and another to represent the new
one [Figure 1]. We have to find an entry that contains the event with
the RGClassDefinition that represents the creation of the class A.

Almost all Epicea events are created with an RGObject as an
internal collaborator 5. Therefore, to have access to those entities,
we can keep them in a multimap indexed by selector. The mainte-
nance of the multimap (addition, changing and removal of entries)
will be made at the moment of the event creation. And it won’t be
necessary to scan the complete log to find the related entries.

Since the events and entities are already present in the current
Epicea implementation, the only additional objects that will be
added are the dependencies.

5. Future work
In this section we describe some improvements to our initial solu-
tion.

5.1 Events vs. entries
In the current Epicea implementation, the Ombu entries are the
ones that are linked through the prior reference. One of the limi-
tations of this approach is that overlapping entries repeat the code
through the related entries. For example, if we have an entry A with
a class definition and an entry B with a modification to that class
definition, B will contain all the code defined in A instead of having
just a reference to it.

Another option would be to move the references to the event
level. The model would be more sound from a semantic point of
view and we can replace the duplicated code for a reference to the
underlying event.

5.2 Visualization of dependencies
Once the extensions for the Epicea model are in place, we can
modify the Log Browser to display the relationship between the
entries in a graphical way.

One option is to draw lines between the entries in the Log
Browser, as the GitK tool does. Another one, possibly more com-
plex, is to add a tab in the lower panel that shows a dependency
tree. This approach can be found in m2eclipse 6.

5.3 Performance test and optimization
It is desirable to test the performance in terms of execution time
and memory consumption of this new features when they are used
with a Log that contains several entries.

One alternative to reduce the memory footprint is to implement
the multimap using a Trie. The keys will be the entity names, but all
entities with a common prefix in their selectors will share that part
of the key. The worst-case access time for a given selector would
be the length of the longest selector defined in the system.

6. Conclusion
Detection of dependencies between changes modelled as first-class
objects are a very important feature of code-history trackers, since
it reduces the effort of the developer to perform tasks like atomic
commits.

5 The exception are expression evaluations, which are only strings evaluated
by the compiler and don’t have an associated Ring object.
6 https://www.eclipse.org/m2e/



In this paper we defined a simple criteria to evaluate four differ-
ent code-history trackers. We also present a solution to model de-
pendencies between changes that makes Epicea feature-complete
from the point of view of the aforementioned criteria.
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Abstract
Code mobility is a mechanism that allows the migration
of running programs between different environments. Such
migration includes amongst others the migration of appli-
cation data and resources. Application’s data is is usually
composed by elements of different nature: from printers and
files, to framework and domain objects. This application
data will be transported along with the code of its program
in space (when serialized and deployed in another environ-
ment) or time (when a new session is started in a differ-
ent point of time). The main problem when moving around
code resides, in our understanding, to global state. While
unreferenced leaf objects are garbage collected, those refer-
enced (transitively) by some global object will remain alive.

In order to support code mobility in time and space, we
need to understand how global application data is used.
With this purpose, we study and classify Pharo’s global
state. This classification uncovers some common patterns
and provides a first insight on how global state should be
managed, specially in code mobility scenarios. As a minor
contribution, we also discuss solutions to each of the found
categories.

1. Introduction
Code mobility is a mechanism that allows the migration of
programs between different environments. It provides sup-
port for e.g., load balancing, adjusting an application’s re-
sources dynamically and functionality customization. Fuggetta
et al. define informally code mobility as the capability to re-
bind a piece of code with the location it is running [? ].

[Copyright notice will appear here once ’preprint’ option is removed.]

Such rebinding may consist, depending on the style of mo-
bility, in the mobility of execution state, application data
and resources, or both of them. Execution state mobility is
the ability to suspend the actual execution of a program and
transfer its internal execution information (e.g., code, ex-
ecution stacks, instruction pointers) to some other environ-
ment. Data mobility is the ability to transfer the application’s
data (e.g., objects, database connections, files) between dif-
ferent environments.

Application data is usually composed by elements of dif-
ferent nature. Files are used for configuration and logging.
Network connections such as sockets are used to commu-
nicate with remote systems. External libraries provide with
code reuse. We can also find objects local to the applica-
tion, of two different categories: domain objects modeling
the application’s specific concerns and application objects
modeling those concerns that are cross-cutting between ap-
plications.

In our experience manipulating the language kernel of
Pharo, we identified several cases where data mobility
presents some issues. We can generalize those issues as mo-
bility either in time (i.e., creating or recreating a program),
or in space (i.e., moving a program between different envi-
ronments):

Transporting code in space. When moving a program from
one environment to another one, some of its state be-
comes invalid. For example, files existing in one machine
will not exist in some other. Because of this, the migra-
tion mechanism should be aware of the state it migrates,
to either reinitialize it, re-bind it in the new environment,
or by keep it with its same value [? ].

Transporting code in time. Image-based systems allow one
to persist the state of a program to restart it at some
other point of time from the last check-point, introducing
the idea of program sessions: every time the system is
restarted, a new session is started. These programming
sessions introduce the concern of session specific state
i.e., state that is only valid during a programming ses-
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sion. The mechanism in charge of stopping and restart-
ing the image has to recognize the session specific state
to re-initialize or rebind it every time a new session is
started.

Creating for the first time. The initial creation of the sys-
tem is a combination of transporting the program in space
and time, since the issues of both appear in it. When cre-
ating or recreating the language kernel from scratch, for
example during a bootstrap process [? ], we must deal
with its initialization. All the initial objects must be cre-
ated, and their state is initialized by either binding it for
the first time to some resource or assigning it some value.
This state should be initialized in a proper order.

One of the main problems when moving code around re-
sides in the existence of global state. While unreferenced
leaf objects are garbage collected, those referenced (tran-
sitively) by some global object will remain alive. Because
of this, we focus our attention on global state (cf. Section
2). Migrating global state in the cases described above in a
generic way shows itself challenging (cf. Section 3). Global
state is used for many different and unrelated purposes in
the Pharo base libraries e.g., from caches to constants val-
ues. Also, the intention of such usage is not explicit in the
source code: its identification requires the developer to read
the complete implementation.

In this paper we present an empirical study on the global
state of Pharo base libraries. Our contribution is twofold:

• We present a classification of the usage of global state,
identifying patterns built with global state constructs in
Pharo (cf. Section 4).

• We discuss our findings and solutions to the issues we
found. Our main goal with this is to make explicit those
patterns. In such a way, client libraries and frameworks
in charge of program migration can be simplified. (cf.
Section 6 and Section 5).

2. Background
Global state is a simple and handy mechanism to share state
between different objects. It is also a simple persistency
mechanism: state hold by it will persist as long as the pro-
gram is alive and running. Additionally, in image-based sys-
tems as Pharo it will remain alive through different program
executions because the image persists its state taking as root
the global objects. In this paper we put focus on global state
because of this persistency property.

Global state is indeed not a bad mechanism per se, and
is often used in applications to implement globally needed
concerns. For example, Pharo implements through it a global
process scheduler and the system dictionary holding all
classes. However, its usage is discouraged in general terms
because it introduces hidden dependencies in the software it
is used.

2.1 Global State in Pharo
Global state in Pharo can be expressed in many forms with
many constructs of the language. In this paper we will focus
on the elements we present following. Note that equivalent
language constructs can be found in other languages such as
Java (for example, with static variables).

Global Variables. Global variables are variables that share
their values to all objects in the system. A global variable
can be accessed from any method, from any object. In
Pharo, these kind of variables are stored in the global
SystemDictionary object. Global variables may reference
either (a) global instances such as Processor or Smalltalk,
either (b) Classes and Traits.

Class Variables. Class variables are variables that belong to
a class. These variables can be accessed by both classes
and instances from the hierarchy below its owner class.
Their value is shared between all the objects that can
access them. In Pharo, these kind of variables are stored
in a Dictionary object in its owner class.

Class Instance Variables. Class instance variables are in-
stance variables of the classes. Their value is not directly
accessible from subclasses and subinstances of the class.
However, they are often made globally accessible with
accessors.

Shared Pools. Shared pools are sets of class variables shared
amongst many classes. Their values are accessible to all
classes (and their instances) that import the shared pool.
In Pharo, Shared Pools as implemented as classes treated
specially by the compiler at binding time.

Method Literals. Each method contains a collection of
those literal objects used in in e.g., strings, literal ar-
rays or numbers. As classes are globally accessible, their
methods are too, and so their literals.

2.2 About the State in Image-Based Systems
Pharo, as a Smalltalk inspired language, is an image-based
language such as Lisp. Image-based languages present the
following two main properties: direct object manipulation
and persistence. Direct object manipulation provides with
instant feedback during development and a flexible way to
understand the state of applications. Persistence allows one
to store those changes made by direct object manipulation
without the need of recreating the system every time it is
started. Indeed, an image-based language can be persisted
and restarted later on, possibly in another machine. We refer
as a session to the time elapsed between the startup of an
image and its shutdown.

These programming sessions have session specific state,
i.e., state that is valid only within a session. For example,
we can name as such file and socket descriptors, handles
to external libraries, operating system information, and time
and date information. These kind of objects become invalid
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when their session is finished. Using them in an invalid state
may lead to unexpected behavior, exceptions and virtual
machine crashes. The language runtime must ensure that this
state is correctly handled on session startup and shutdown:
e.g., reinitialize it or discard it.

3. Motivation
In this section we show why understanding and making ex-
plicit the usage of global state is important. We introduce
first an example based on two Pharo’s cache implementa-
tions, and their problems. Then, we explore three different
situations in which those problems are made more evident.

3.1 Problems on Global State Usage: an Example
To exemplify the problems on global state usage, we present
here two different global cache implementations we find in
Pharo 3.0. First, in Figure 1, we present a simplified version
of the AST cache. Second, in Figure 2, we find an extract of
the HelpIcon class, with the code related to an icon cache. By
looking at these two ad-hoc implementations of caches, we
identify the following issues:

Incompleteness. Both cache implementations were written
to solve only particular issues. The AST cache presents
weak references as it inherits from the WeakIdentityKey-
Dictionary class and also presents methods to be flushed.
The icon cache does not present code for any of those
features. None of them cover some concerns a cache may
want to address such as specifying a maximum amount
of elements or a recycling strategy (LRU, FIFO, etc.).

Non-Explicitness. In order to identify the examples as
caches we need to read their code: the names of the
classes and variables gives us an idea of its responsi-
bility as caches. The default method in the AST cache
hints us about having found also a singleton. This prob-
lem uncovers the existence of hidden information in the
system. One cannot query the system to, for example,
obtain a list of the existing caches in order to flush them,
or make a report on their memory usage.

3.2 Creating Programs from Scratch: Bootstrapping
While bootstrapping Pharo [? ], we must initialize the im-
age’s global state. We observed the need for an order in this
initialization, showing off a hidden coupling between code
pieces. For example, some global tables must be initialized
before initializing the classes state, which in turn must be ini-
tialized before the rest of the language kernel (i.e., the startup
and shutdown lists, the main processes, etc.).

Since the global state language constructs are used for
different concerns implicitly, it is difficult to discern wether
they are responsibility of the language kernel, of basic li-
braries such as Collections, or other not-basic ones such as
Networking. This makes the bootstrap process difficult to
maintain. A lot of ad-hoc code should be written to handle

1 WeakIdentityKeyDictionary subclass: #ASTCache
2 classVariableNames: ’Default’.
3

4 ASTCache>>at: aCompiledMethod
5 ^ self
6 at: aCompiledMethod
7 ifAbsentPut: [ self newASTFor: aCompiledMethod ].
8

9 ASTCache>>newASTFor: aMethod
10 "creation of the AST..."
11

12 ASTCache>>reset
13 self removeAll.
14

15 ASTCache class>>default
16 ^ Default ifNil: [ Default := self new ].
17

18 ASTCache class>>shutDown
19 self default reset.

Figure 1. Simplified code of Pharo’s AST cache.

1 Object subclass: #HelpIcons
2 classVariableNames: ’Icons’.
3

4 HelpIcons>>icons
5 ^ Icons ifNil: [Icons := Dictionary new]
6

7 HelpIcons>>iconNamed: aSymbol
8 ^ self icons at: aSymbol ifAbsentPut: [self perform: aSymbol]
9

10 HelpIcons>>refreshIcon
11 ^ "creates a new icon object"

Figure 2. Code of Pharo’s Help Icon class with an icon
cache.

the dependencies between the global state in Pharo’s lan-
guage kernel.

3.3 Transporting Programs in Time: Session
Awareness

Image-based systems introduce the concern of session spe-
cific state. State holding references to for example, files,
caches, or platform specific information, may become in-
valid when a new session is started in a different moment.
Pharo presents a startup and a shutdown mechanism to sup-
port this. The language runtime raises events on its startup
and shutdown. Classes subscribed to such events are notified
and will execute some code according to the event. The han-
dler of these events is responsibility of the class developer.
This mechanism hides information in two different levels:

Dependencies between classes. The subscribed classes re-
ceive the startup and shutdown events in an explicitly de-
fined order. This order is present in a list which is defined
by the developers. This list express a dependency be-
tween classes e.g., some classes must receive the startup
event before others to satisfy its invariants. However, this
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list does not actually express the reason of this depen-
dency i.e., which is the state or invariants that should be
guaranteed before each class receives the proper event.

Semantics of class state. The startup and shutdown event
handlers, which are in charge of the clean-up and reini-
tialization of some the global state, are written in an im-
perative fashion. This imperative fashion hides the se-
mantics and invariants of this state.

This hidden information makes difficult to change the
startup and shutdown mechanism. Some questions appear
when doing so: Can we remove some class from these lists?
Can we alter the order without changing the behavior? When
we register a new class, in which position should we put it?

3.4 Transporting Programs in Space: Serialization
Migrating objects, and specially code (classes and methods),
from one image to another requires in general customiza-
tions for the global state it carries and references. References
to external classes and global variables may not be serialized
but just re-binded in the new environment. Class variables
containing constant value objects may be transported with
the program. Session specific state should be re-initialized,
as program migration implies session change also.

A migration mechanism needs information about the se-
mantics of the state in migration, so it knows wether it should
reinitialize it, re-bind it, or keep it as it is. As this information
is not usually explicitly available in the program under mi-
gration, the developer must add it in the form of extensions
or descriptions, external to the program. For example, the se-
rialization library Fuel [? ] presents special clusters to handle
and customize the serialization of global variables and class
variables. The user must customize these clusters externally.

4. Classification of Pharo’s Global State
4.1 Classification Methodology
Our universe of study is the latest release of Pharo, Pharo
3.0. We selected as individuals to study all those usages of
global state language constructs as we presented it in Sec-
tion 2 i.e., class variables and class instance variables, shared
pools and global variables. For simplicity, we excluded from
our analysis the classes referenced by global variables. We
also excluded method literals because analyzing them would
mean to read every single method in the language kernel.

The global state in Pharo is present mostly in ad-hoc
implementations, making difficult the usage of automated
methods for its classification. Since the goal of this paper
is not to obtain an automatic classification, we built our clas-
sification using purely empirical observation: reading the
code. We took each of the selected individuals, read all the
code related to it and made a qualitative evaluation of it. We
put special emphasis on the side-effects on such individuals,
which showed useful to recognize the individual’s semantics
in the program.

As a result, we distinguished some patterns of usage,
which lead us to the categories in Section 4.2. Note that
the individuals under study can fall into more than of these
categories e.g., a cache made globally as a singleton. Also,
to avoid noise we excluded from the classification those
individuals whose role in the source code was very specific,
thus they did not conform a representative category.

4.2 Categories
Constants. Constants are values that are initialized once and

never updated. Pharo has no construct to express constant
values. Thus, they are expressed using the other available
constructs. This means that the semantics of constants
must be ensured explicitly in the code or they are not
ensured at all.

Settings and Configurable Default Values. Settings and
configurable default values provide a single point to con-
figure and share values amongst several instances. They
are publicly accessible so they can be modified and cus-
tomized by developers. Pharo uses settings to store for
example maximum size of UI widgets, code completion
configurations and network configurations.

Singletons. Singletons are well known objects globally ac-
cessible in the system [? ? ]. They are used to provide
a single access point to some shared state or behavior.
Pharo presents several different singleton implementa-
tions: global leaf objects (not classes nor traits) such as
e.g., the Processor or the Transcript, leaf objects stored in
class variables or class instance variables often accessi-
ble through the uniqueInstance message, and some classes
which are indeed used as singletons.

Caches. A cache is a buffer that stores duplicated infor-
mation to reduce the consumption of resources such as
CPU or memory. Caches store usually up to a maximum
amount of elements, discarding old ones following a
given strategy e.g., First In First Out (FIFO) and Least
Recently Used (LRU). Pharo presents several caches
which store for example images, fonts and package meta-
data.

Registries. A registry stores a list of possible service providers
and resolves which one of them is the appropriate to han-
dle a task. They are usually used as a factory, to decou-
ple the users of a service from a particular implementa-
tion. For example, a compiler registry may store all the
compiler implementations available and provide a default
one. A registry allows users to subscribe and unsubscribe
services into it. For example, when a notification has to
be shown to the end user, the UIManager registry decides
how to show it according to its registered providers: ei-
ther by using the standard output or the graphical user
interface. Pharo uses registries to manage different kind
of concerns such as the compiler suite, the fonts or the
UI interactions.
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Session Specific State. Session specific state is the global
state that is tied to a particular session e.g., information
gathered from the current platform, file handles and li-
brary handles. This state should be reinitialized or reset
when a new session is started either in a new machine
or a different one, to avoid misbehaviors and unexpected
errors.

Process Controllers. Process controllers manage the life
cycle of well known processes such as the idle pro-
cess, the user interface (UI) process or the low space
watcher process. They control how and when these well
known processes are started, terminated, suspended and
resumed.

Finalizables. Resources external to the language, such as
files, sockets, or handles to external libraries, must be
finalized accordingly when they are garbage collected or
new session are started. For such a task, the classes of
those objects implement a finalization mechanism to be
aware of garbage collections and handle such situations.

Graphical Resources. Graphical resources are objects such
as images, fonts, icons or bitmaps. These resources are
embedded in the system using the global state constructs.
As such, there is no general solution to discard them or
reload them.

4.3 Results and Discussion of Impact
Table 1 lists the results of applying each of our categories to
our set of individuals under study: how many of them apply
to each category. The details of such a classification can be
found in the Appendix A.

These results present some particularities we should take
into account before doing a deep analysis. First, the number
of detected graphical resources does not really represent
the reality. A lot of graphical resources are represented as
byte arrays in method literals (which we did not measure
because of its complexity). With respect to the numbers
in our results, we can argue that they give us an idea of
the impact produced by each category i.e., code-migration
libraries have to potentially handle each appearance of these
patterns in an ad-hoc fashion, since they are not explicit
in the source code. For example, if we would decide that
on serialization all caches should be flushed, we must add
custom code to handle each of the 43 caches.

5. Discussion: a need for Reification
5.1 Concepts to Reify in Pharo.
Bouraqadi et al. [? ? ] presented already the need for the
reification of resources used in a mobile code. The reifica-
tion of resources provide support for an open architecture
and facilitates the task of object migration. They also make
explicit the concepts that are part of the program, providing
with information the system can benefit from. We identify in

Category Amount satifying
Constants 1722
Settings and 236
Configurable Default Values
Singletons 65
Graphical Resources* 47
Caches 43
Registries 31
Session Specific 27
Process Controllers 11
Finalizables 6

Table 1. Amount of individuals classified under each of the
identified categories.

particular the need for reification of the following elements
part of our categories:

Processes. Pharo processes, although they are already ob-
jects, are managed from other objects. Process specific
state is controlled by objects other than the process itself,
breaking encapsulation. As such, the life-cycle of pro-
cesses are tied to those objects that create them or keep
their state. A first class representation of processes, on
the other hand, will encapsulate the process specific state,
avoid conflicts on its access, and provide a common in-
terface for their manipulation.

Finalizables. First class finalizable resources provide a
framework supporting uniform finalization and resource
deallocation.

Caches. First class caches provide a uniform and complete
implementation of caches libraries can rely upon. Addi-
tionally they will enable the system with introspection
and self-modification of such caches.

Variables. First class variables, namely slots, were sketched
by Verwaest et al. [? ] and a first version introduced into
Pharo 3.0. Slots introduce the ability to refine instance
variables, give them specific behavior and annotate them
with meta-information. Specialized slots can be used to
implement e.g., session specific state, constant values or
settings.

5.2 Using explicit metaclasses.
Finding all singletons installed in the system could be eas-
ily achieved through the usage of explicit metaclasses [? ]
or traits [? ]. Explicit metaclasses and traits allow the shar-
ing of behavior between classes, and thus, they eliminate the
need for ad-hoc implementations of e.g., singletons. Addi-
tionally, reifying the singleton abstraction in the language,
provides with the ability to query and act upon the installed
singletons. Implementing them with traits, however, presents
as main limitation that the current trait implementation in
Pharo is stateless. Thus, it does not allow to express class
variables to hold the singleton instance.
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6. Discussion: Moving responsibilities to the
language runtime

Within our classification, we understand there are some con-
cerns that should be moved under the umbrella of the lan-
guage or its runtime system. The language may provide its
own abstractions for recurrent problems such as caching or
registering services. This will provide with the proper and
needed meta-information to handle services. Additionally,
providing end users with correct and complete implemen-
tations will avoid the ad-hoc implementations with repeated
logic.

6.1 Resource manager
As we noted in the results, graphical resources such as im-
ages, icons and fonts are present as globally accessible re-
sources in Pharo. We can add also that Pharo’s memory is
occupied in great percentage by instantiated bitmaps1 [? ].
There is not, however, a possibility to inspect all available
resources, understand their origin (the package, class and
method that defines them), or recreate them from files. This
poses the need for a resource manager.

A sketch implementation of such a resource manager was
implemented as a in-memory file system. In such a proto-
type, each Pharo package contains an associated file system
that stores resources of that package. Images, icons, config-
uration files, and other files are stored in this file system.
Package resources can be accessed from within and outside
the package in an structured way, and serialized along with
its package.

6.2 Session manager
How session specific state is handled nowadays denotes the
need for a session manager. Currently, in the presence of ses-
sion specific state, the class that stores it has to be subscribed
to the startup and shutdown events of the runtime system.
These two events are used to reset and initialize the class
state when a new session is started.

We sketched a session manager to ease the management
of session specific state. First class instance variables (Slots)
describe declaratively their initialization when a new session
is started. Then, during the startup of a new session, the ses-
sion manager will reinitialize each of these slots using their
description. This session manager encapsulates the need for
the startup and shutdown lists, and removes such responsi-
bility from the developer.

7. Related Work
Fuggetta et al. [? ] present also a classification of the state
of mobile systems, but using as criteria the strategy used
for migration. As such, their classification is orthogonal and
complementary to ours. They present two properties to char-
acterize the data to migrate

1 24.50% according to our measures in latest Pharo version

Transferrable. A transferrable element is the one that can
be physically migrated e.g., a file. Oppositely, a non
transferrable one is the one that cannot be migrated, e.g.,
as a printer.

Desirability to transfer it. An application can mark some
data as fixed or free according to its needs. Fixed data
is associated permanently with its original environment,
while free data migration is allowed.

and three ways to bind an application to a given resource

By identifier. Resources binded by identifier are tied with a
particular instance of a resource e.g., a socket. When a
program is migrated, all its resources binder by identifier
are kept in their original environment. A network com-
munication is enforced between them.

By value. Resources binded by value are interested in the
value of a resource and not in their identity, e.g., the
contents of a file. These kind of resources can be copied
along with the program upon migration.

By type. Resources binded by type are intended to provide
some kind of service despite their value or identity e.g.,
a display. These kind of resources are rebinded to local
resources of the same type after migration.

Ungar et al. implemented a transporter for the Self pro-
gramming language [? ]. This transporter had to deal with
many of the difficulties we presented above, in particular the
lack of explicit usage information. They provided a generic
solution to the problem: let the developer annotate the ob-
jects’ slots to guarantee the desired state of the program upon
a migration. However, a question remained: How should de-
velopers annotate the slots? To answer this question, they
provided with a series of properties that must help in such
analysis.

Does identity matter? The developer has to identify those
objects whose identity matters, and those whose it doesn’t.
When identity matters, the transporter must ensure that
references to the same object are kept the same after
migration. When it does not, the transporter can simply
duplicate the object.

An initial value must always be enforced? Some objects
must be reinitialized every time they are migrated. This
is for example the case of caches.

An object must be written in an abstract or concrete way?
Some objects can be rebuilt as the result of an expression,
while some others must be built by concretely enumerat-
ing its slots.

8. Conclusion and Future Work
In this paper we studied the usage of global state in Pharo.
The study of global state is interesting since references
kept from global state are persisted in image-based sys-
tems. Global state is also a concern in when working in
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code mobility because resources globally available must be
reinitialized or rebinded when code is migrated.

We present a classification of Pharo’s global state based
on its usage, and found many patterns that are recurrent
in the kernel of the language, though not explicit in the
code.We discuss how to make explicit these patterns so the
language kernel can benefit from it, either by reifying them
or moving some responsibilities to the language kernel.

This work is a first step to prepare Pharo to the mobile
code world. To be able to transport Pharo programs either
in time or space, the abstractions we found should be made
explicit in the language, and so, libraries and frameworks

can take advantage of them. As future work we also consider
that the discussed sketches have to be iterated and developed
further.
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A. Appendix: Classification
A.1 Finalizables
FileHandle -> #Registry
FT2Handle -> #Registry
Socket -> #Registry
StandardFileStream -> #Registry
WeakRegistry -> #Default

A.2 Process Controllers
CPUWatcher -> #CurrentCPUWatcher
Delay -> #TimerEventLoop
MessageTally -> #Timer
MorphicUIManager -> #UIProcess
ProcessBrowser -> #SuspendedProcesses
ProcessBrowser -> #WellKnownProcesses
ProcessorScheduler -> #BackgroundProcess
SmalltalkImage -> #LowSpaceProcess
UpdateStreamer -> #UpdateDownloader
WeakArray -> #FinalizationProcess

A.3 Registries
Beeper -> #default
ChangeSet -> #AllChangeSets
ChangeSet -> #current
EncodedCharSet -> #EncodedCharSets
ExternalDropHandler -> #DefaultHAndler
ExternalDropHandler -> #RegisteredHandlers
FileServices -> #FileReaderRegistry
FreeTypeFontProvider -> #current
FreeTypeGlyphRenderer -> #current
HelpBrowser -> #DefaultHelpBrowser
LanguageEnvironment -> #ClipboardInterpreterClass
LanguageEnvironment -> #Current
LanguageEnvironment -> #FileNameConverter
LanguageEnvironment -> #InputInterpreterClass
LanguageEnvironment -> #KnownEnvironments
LanguageEnvironment -> #SystemConverter
Locale -> #KnownLocales
MCPackageManager -> #registry
MCServerRegistry -> #registry
MetacelloProjectRegistration -> #registry
Nautilus -> #PluginClasses
PluggableTextMorph -> #StylingClass
RBProgramNode -> #FormatterClass
RGFactory -> #CurrentFactories
SmalltalkImage -> #CompilerClass
SmalltalkImage -> #Tools
SoundSystem -> #Current
TestResource -> #current
UIManager -> #Default
UITheme -> #Current
ZnServer -> #ManagedServers
ZnSingleThreadedServer -> #Default

A.4 Caches
ASTCache -> #default
AbstractMethodWidget -> #MethodsIconsCache

AbstractNautilusUI -> #ClasssesIconsCache
AbstractNautilusUI -> #GroupsIconsCache
AbstractNautilusUI -> #PackagesIconsCache
BitBlt -> #CachedFontColorMaps
BitBlt -> #ColorConvertingMaps
CairoBackendCache -> #soleInstance
Color -> #CachedColormaps
Color -> #MaskingMap
FreeTypeCache -> #current
GLMUIThemeExtraIcons -> #icons
GradientFillStyle -> #PixelRampCache
HelpIcons -> #Icons
KomitClass -> #classes
KomitMethod -> #methods
KomitPackage -> #packages
KomitRemote -> #icon
Komitter -> #lastMessage
LoadingMorphState -> #image
LogicalFont -> #all
MCDefinition -> #Instances
MCGitHubRepository -> #DownloadCache
MCMethodDefinition -> #Definitions
MCSaveVersionDialog -> #PreviousMessages
NECSymbols -> #cachedSymbols
RPackageSet -> #cachePackages
ScrollBar -> #ArrowImagesCache
ScrollBar -> #BoxesImagesCache
SettingDeclaration -> #ValueListCache
SingleCodeCriticResultList -> #icons
SugsSuggestionFactory -> #collectorForAll
SugsSuggestionFactory -> #collectorForAssignment
SugsSuggestionFactory -> #collectorForClassVariable
SugsSuggestionFactory -> #collectorForClass
SugsSuggestionFactory -> #collectorForInstancesVariable
SugsSuggestionFactory -> #collectorForLiteral
SugsSuggestionFactory -> #collectorForMessage
SugsSuggestionFactory -> #collectorForMethod
SugsSuggestionFactory -> #collectorForSourceCode
SugsSuggestionFactory -> #collectorForTemporaryVariable
SugsSuggestionFactory -> #collectorForUndeclaredVariable

A.5 Graphical Resources
AbstractMethodWidget -> #MethodsIconsCache
AbstractNautilusUI -> #ClasssesIconsCache
AbstractNautilusUI -> #GroupsIconsCache
AbstractNautilusUI -> #PackagesIconsCache
Cursor -> #BlankCursor
Cursor -> #BottomLeftCursor
Cursor -> #BottomRightCursor
Cursor -> #CornerCursor
Cursor -> #CrossHairCursor
Cursor -> #CurrentCursor
Cursor -> #DownCursor
Cursor -> #MarkerCursor
Cursor -> #MenuCursor
Cursor -> #MoveCursor
Cursor -> #NormalCursor
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Cursor -> #OriginCursor
Cursor -> #OverEditableText
Cursor -> #ReadCursor
Cursor -> #ResizeLeftCursor
Cursor -> #ResizeTopCursor
Cursor -> #ResizeTopLeftCursor
Cursor -> #ResizeTopRightCursor
Cursor -> #RightArrowCursor
Cursor -> #SquareCursor
Cursor -> #TargetCursor
Cursor -> #TopLeftCursor
Cursor -> #TopRightCursor
Cursor -> #UpCursor
Cursor -> #WaitCursor
Cursor -> #WebLinkCursor
Cursor -> #WriteCursor
Cursor -> #XeqCursor
FreeTypeCache -> #current
FreeTypeSettings -> #current
GLMUIThemeExtraIcons -> #icons
HelpIcons -> #Icons
IconicButton -> #DefaultGraphics
ImageMorph -> #DefaultForm
LogicalFontManager -> #current
RemotesManager -> #addRemoteIcon
RemotesManager -> #editRemoteIcon
RemotesManager -> #removeRemoteIcon
ScrollBar -> #ArrowImagesCache
ScrollBar -> #BoxesImagesCache
SingleCodeCriticResultList -> #icons
Transcripter -> #Icon
TransferMorph -> #CopyPlusIcon

A.6 Session Specific State
MCGitHubRepository -> #DownloadCache
MCCacheRepository -> #default
DiskStore -> #CurrentFS
NOCCompletionTable -> #table
NOCCompletionTable -> #classTable
Locale -> #Current
Locale -> #CurrentPlatform
DateAndTime -> #LocalTimeZone
FT2Handle -> #Session
FileLocator -> #Resolver
FileStream -> #Stdin
FileStream -> #Stdout
FileStream -> #TheStdioHandles
FileStream -> #StdioFiles
FileStream -> #Stderr
LanguageEnvironment -> #SystemConverter
LanguageEnvironment -> #FileNameConverter
UUIDGenerator -> #Default
VirtualMachine -> #WordSize
WeakFinalizationList -> #HasNewFinalization
AthensCairoSurface -> #uniqueSession
AthensCairoSurface -> #dispatch
AthensCairoSurface -> #dispatchStruct
CairoLibraryLoader -> #session
CairoLibraryLoader -> #libHandle

Session -> #current
MultiByteFileStream -> #LineEndDefault

A.7 Singletons
ASTCache -> #default
ActiveEvent -> #ActiveEvent
ActiveHand -> #ActiveHand
ActiveWorld -> #ActiveWorld
Author -> #uniqueInstance
BorderStyle -> #Default
CPUWatcher -> #CurrentCPUWatcher
CairoBackendCache -> #soleInstance
ChangesLog -> #DefaultInstance
Clipboard -> #Default
CommandLineArguments -> #singleton
CriticWorkingConfiguration -> #Current
Display -> #Display
EditorFindReplaceDialogWindow -> #Singleton
EmptyLayout -> #instance
FreeTypeCache -> #current
FreeTypeSettings -> #current
IdentityTransform -> #Default
InputEventFetcher -> #Default
KMBuffer -> #uniqueInstance
KMPragmaKeymapBuilder -> #UniqueInstance
KMRepository -> #Singleton
KomitterManager -> #instance
LayoutEmptyScope -> #instance
LogicalFontManager -> #current
MBConfigurationRoot -> #Current
MCFileTreeFileUtils -> #Current
MCRepositoryGroup -> #default
MCServerRegistry -> #uniqueInstance
MetacelloPlatform -> #Current
NBExternalResourceManager -> #soleInstance
NECController -> #uniqueInstance
NNavNavigation -> #Instance
NNavNavigation -> #Instance
NativeBoost -> #Current
NautilusMonticello -> #Default
OSPlatform -> #Current
PackageOrganizer -> #default
PharoFilesOpener -> #Default
PharoTutorial -> #Instance
ProcessSpecificVariable -> #soleInstance
Processor -> #Processor
RBRefactoringManager -> #Instance
RBRefactoryChangeManager -> #Instance
RPackageOrganizer -> #default
RecentMessageList -> #UniqueInstance
Sensor -> #Sensor
SharedValueHolder -> #instance
Smalltalk -> #Smalltalk
SoundTheme -> #Current
SourceFiles -> #SourceFiles
Spotlight -> #Current
StartupPreferencesLoader -> #UniqueInstance
SystemAnnouncer -> #announcer
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SystemOrganization -> #SystemOrganization
SystemProgressMorph -> #UniqueInstance
SystemVersion -> #Current
Transcript -> #Transcript
UUIDGenerator -> #Default
Undeclared -> #Undeclared
UserManager -> #default
VTermOutputDriver -> #stderrTerminalInstance
VTermOutputDriver -> #stdoutTerminalInstance
World -> #World
ZnNetworkingUtils -> #Default

A.8 Settings and Configurable Default Values
AbstractNautilusUI -> #NextFocusKey
AbstractNautilusUI -> #PreviousFocusKey
AlphaImageMorph -> #DefaultImage
BalloonMorph -> #BalloonFont
CCompilationContext -> #WarningAllowed
CPUWatcher -> #CpuWatcherEnabled
ChangeSet -> #DefaultChangeSetDirectoryName
ChangeSet -> #MustCheckForSlips
CodeHolder -> #AnnotationRequests
CodeHolder -> #BrowseWithPrettyPrint
CodeHolder -> #DecorateBrowserButtons
CodeHolder -> #DiffsInChangeList
CodeHolder -> #DiffsWithPrettyPrint
CodeHolder -> #OptionalButtons
CodeHolder -> #ShowAnnotationPane
CodeHolder -> #SmartUpdating
CommandLineUIManager -> #SnapshotErrorImage
DangerousClassNotifier -> #enabled
Deprecation -> #RaiseWarning
Deprecation -> #ShowWarning
DialogItemsChooserUI -> #alreadySearchedSelectedItemsList-
MaxSize
DialogItemsChooserUI -> #alreadySearchedUnselectedItemsList-
MaxSize
DisplayScreen -> #DeferringUpdates
DisplayScreen -> #DisplayChangeSignature
DisplayScreen -> #LastScreenModeSelected
DisplayScreen -> #ScreenSave
Editor -> #BlinkingCursor
Editor -> #CmdKeysInText
Editor -> #DumbbellCursor
Editor -> #SkipOverMultipleSpaces
EyeInspector -> #useAutoRefresh
FLCompiledMethodCluster -> #transformationForSerializing
FinderUI -> #Icon
FinderUI -> #searchedTextListMaxSize
Form -> #FloodFillTolerance
FreeTypeSettings -> #UpdateFontsAtImageStartup
FreeTypeSystemSettings -> #LoadFT2Library
GrowlMorph -> #DefaultBackgroundColor
GrowlMorph -> #Position
HaloMorph -> #CurrentHaloSpecifications
HaloMorph -> #HaloEnclosesFullBounds
HaloMorph -> #HaloWithDebugHandle
HaloMorph -> #ShowBoundsInHalo
HandMorph -> #DoubleClickTime

HandMorph -> #NormalCursor
HandMorph -> #ShowEvents
HandMorph -> #UpperHandLimit
Heap -> #sortBlock
LongTestCase -> #RunLongTestCases
MBInfo -> #ValidateAll
MCDirectoryRepository -> #DefaultDirectoryName
MCFileRepositoryInspector -> #Order
MCFileTreeRepository -> #defaultPackageExtension
MCFileTreeRepository -> #defaultPropertyFileExtension
MCGitHubRepository -> #CacheDirectory
MCMethodDefinition -> #InitializerEnabled
MCWorkingCopyBrowser -> #Order
MCWorkingCopyBrowser -> #ShowOnlyRepositoriesFromWork-
ingCopy
MCWorkingCopyBrowser -> #repositorySearchMaxSize
MCWorkingCopyBrowser -> #workingCopySearchMaxSize
MessageDialogWindow -> #AutoAccept
MessageTally -> #DefaultPollPeriod
MetacelloCommonMCSpecLoader -> #RetryPackageResolution
MetacelloScriptEngine -> #DefaultRepositoryDescription
MetacelloScriptEngine -> #DefaultVersionString
MonticelloRepositoryBrowser -> #Order
Morph -> #CmdGesturesEnabled
Morph -> #CycleHalosBothDirections
Morph -> #DefaultYellowButtonMenuEnabled
Morph -> #HalosEnabled
MorphicModel -> #KeyboadFocusOnMouseDown
MorphicModel -> #MouseOverForKeyboardFocus
NECPreferences -> #backgroundColor
NECPreferences -> #captureNavigationKeys
NECPreferences -> #caseSensitive
NECPreferences -> #enabled
NECPreferences -> #expandPrefixes
NECPreferences -> #popupAutomaticDelay
NECPreferences -> #popupShowAutomatic
NECPreferences -> #popupShowWithShortcut
NECPreferences -> #smartCharactersMapping
NECPreferences -> #smartCharactersWithDoubleSpace
NECPreferences -> #smartCharactersWithSingleSpace
NECPreferences -> #smartCharacters
NECPreferences -> #spaceAfterCompletion
NECPreferences -> #useEnterToAccept
NNavNavigation -> #UseArrowShortcuts
Nautilus -> #CommentPosition
Nautilus -> #HistoryMaxSize
Nautilus -> #OpenOnGroups
Nautilus -> #ShowAnnotationPane
Nautilus -> #ShowHierarchy
Nautilus -> #SwitchClassesAndPackages
Nautilus -> #WarningLimit
Nautilus -> #emptyCommentWarning
Nautilus -> #maxSize
Nautilus -> #populateMethodList
Nautilus -> #useOldStyleKeys
NautilusRefactoring -> #PromptOnRefactoring
NetNameResolver -> #DefaultHostName
NetworkSystemSettings -> #BlabEmail
NetworkSystemSettings -> #HTTPProxyExceptions
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NetworkSystemSettings -> #HTTPProxyPort
NetworkSystemSettings -> #HTTPProxyServer
NetworkSystemSettings -> #ProxyPassword
NetworkSystemSettings -> #ProxyUser
NetworkSystemSettings -> #UseHTTPProxy
NetworkSystemSettings -> #UseNetworkAuthentication
ObjectExplorer -> #ShowIcons
PSMCPatchMorph -> #UsedByDefault
PackageTreeNautilus -> #ShowGroupsOnTop
Paragraph -> #InsertionPointColor
Path -> #absoluteWindowsPathRegex
PluggableButtonMorph -> #UseGradientLook
PluggableTextMorph -> #ShowTextEditingState
PluggableTextMorph -> #StylingClass
PluggableTextMorphWithLimits -> #DefaultWarningLimit
PolygonMorph -> #CurvierByDefault
PolymorphSystemSettings -> #DesktopColor
PolymorphSystemSettings -> #DesktopColor
PolymorphSystemSettings -> #DesktopGradientDirection
PolymorphSystemSettings -> #DesktopGradientDirection
PolymorphSystemSettings -> #DesktopGradientFillColor
PolymorphSystemSettings -> #DesktopGradientFillColor
PolymorphSystemSettings -> #DesktopGradientOrigin
PolymorphSystemSettings -> #DesktopGradientOrigin
PolymorphSystemSettings -> #DesktopImageFileName
PolymorphSystemSettings -> #DesktopImageFileName
PolymorphSystemSettings -> #DesktopLogoFileName
PolymorphSystemSettings -> #DesktopLogoFileName
PolymorphSystemSettings -> #DesktopLogo
PolymorphSystemSettings -> #DesktopLogo
PolymorphSystemSettings -> #ShowDesktopLogo
PolymorphSystemSettings -> #ShowDesktopLogo
PolymorphSystemSettings -> #UseDesktopGradientFill
PolymorphSystemSettings -> #UseDesktopGradientFill
PolymorphSystemSettings -> #usePolymorphDiffMorph
PolymorphSystemSettings -> #usePolymorphDiffMorph
ProgressBarMorph -> #DefaultHeight
ProgressBarMorph -> #DefaultWidth
ProportionalSplitterMorph -> #ShowHandles
RBConfigurableFormatter -> #CascadedMessageInsideParenthe-
ses
RBConfigurableFormatter -> #FormatCommentWithStatements
RBConfigurableFormatter -> #IndentString
RBConfigurableFormatter -> #IndentsForKeywords
RBConfigurableFormatter -> #KeepBlockInMessage
RBConfigurableFormatter -> #LineUpBlockBrackets
RBConfigurableFormatter -> #MaxLineLength
RBConfigurableFormatter -> #MethodSignatureOnMultipleLines
RBConfigurableFormatter -> #MinimumNewLinesBetweenState-
ments
RBConfigurableFormatter -> #MultiLineMessages
RBConfigurableFormatter -> #NewLineAfterCascade
RBConfigurableFormatter -> #NewLineBeforeFirstCascade
RBConfigurableFormatter -> #NewLineBeforeFirstKeyword
RBConfigurableFormatter -> #NewLinesAfterMethodComment
RBConfigurableFormatter -> #NewLinesAfterMethodPattern
RBConfigurableFormatter -> #NewLinesAfterTemporaries
RBConfigurableFormatter -> #NumberOfArgumentsForMultiLine
RBConfigurableFormatter -> #OneLineMessages
RBConfigurableFormatter -> #PeriodsAtEndOfBlock

RBConfigurableFormatter -> #PeriodsAtEndOfMethod
RBConfigurableFormatter -> #RetainBlankLinesBetweenState-
ments
RBConfigurableFormatter -> #StringFollowingReturn
RBConfigurableFormatter -> #StringInsideBlocks
RBConfigurableFormatter -> #StringInsideParentheses
RBConfigurableFormatter -> #TraditionalBinaryPrecedence
RBConfigurableFormatter -> #UseTraditionalBinaryPrecedence-
ForParentheses
RBRefactoring -> #RefactoringOptions
RBRefactoryChangeManager -> #UndoSize
RealEstateAgent -> #StaggerOffset
RealEstateAgent -> #StandardSize
RealEstateAgent -> #UsedStrategy
RecentMessageList -> #settingDropList
SHPreferences -> #CustomStyleTable
SHPreferences -> #Groups
SHPreferences -> #enabled
SHTextStylerST80 -> #styleTable
SHTextStylerST80 -> #textAttributesByPixelHeight
ScriptLoader -> #CheckImageSyncWithUpdate
SettingBrowser -> #regexpSearch
SettingBrowser -> #searchedTextList
SimpleEditor -> #CmdActions
SimpleEditor -> #ShiftCmdActions
SmalltalkImage -> #ShouldDownloadSourcesFile
SoundSystem -> #SoundEnabled
SoundSystem -> #SoundQuickStart
SoundTheme -> #UseThemeSounds
SpecDebugger -> #AlwaysOpenFullDebugger
SpecDebugger -> #ErrorRecursion
SpecDebugger -> #FilterCommonMessageSends
SpecDebugger -> #LogDebuggerStackToFile
SpecDebugger -> #LogFileName
SpecDebuggerStack -> #DoItFilterEnabled
SpecDebuggerStack -> #FilterDictionary
SpecDebuggerStack -> #KCFilterEnabled
SpecDebuggerStack -> #NilSelectorsFilterEnabled
StandardFonts -> #ButtonFont
StandardFonts -> #CodeFont
StandardFonts -> #HaloFont
StandardFonts -> #ListFont
StandardFonts -> #MenuFont
StandardFonts -> #WindowTitleFont
StartupPreferencesLoader -> #AllowStartupScript
StringMorph -> #EditableStringMorph
SystemProgressMorph -> #horizontalPosition
SystemProgressMorph -> #verticalPosition
SystemWindow -> #CloseBoxImage
SystemWindow -> #CollapseBoxImage
SystemWindow -> #FullscreenMargin
TaskListMorph -> #KeepOpen
TaskbarMorph -> #ShowTaskbar
TaskbarMorph -> #ShowWindowPreview
TextDiffBuilder -> #IgnoreLineEndings
TextDiffBuilder -> #InsertTextAttributes
TextDiffBuilder -> #NormalTextAttributes
TextDiffBuilder -> #RemoveTextAttributes
TextEditor -> #CaseSensitiveFinds
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TextEditor -> #UseFindReplaceSelection
TextEditor -> #UseSecondarySelection
TextEditor -> #UseSelectionBar
TextEditor -> #cmdActions
TextEditor -> #shiftCmdActions
TextEntryDialogWindow -> #MinimumWidth
UITheme -> #defaultSettings
UserInterruptHandler -> #CmdDotEnabled
Week -> #StartDay
WorldState -> #CanSurrenderToOS
WorldState -> #DebugShowDamage
WorldState -> #DesktopMenuPragmaKeyword
WorldState -> #DesktopMenuTitle
WorldState -> #EasySelectingWorld
WorldState -> #MinCycleLapse
WorldState -> #ServerMode
WorldState -> #ShowUpdateOptionInWorldMenu
ZnConstants -> #DefaultMaximumEntitySize
ZnServer -> #AlwaysRestart

A.9 Constants
AJConstants -> #CcA
AJConstants -> #CcABOVE
AJConstants -> #CcABOVEEQUAL
AJConstants -> #CcAE
AJConstants -> #CcB
AJConstants -> #CcBE
AJConstants -> #CcBELOW
AJConstants -> #CcBELOWEQUAL
AJConstants -> #CcC
AJConstants -> #CcE
AJConstants -> #CcEQUAL
AJConstants -> #CcFPNOTUNORDERED
AJConstants -> #CcFPUNORDERED
AJConstants -> #CcG
AJConstants -> #CcGE
AJConstants -> #CcGREATER
AJConstants -> #CcGREATEREQUAL
AJConstants -> #CcL
AJConstants -> #CcLE
AJConstants -> #CcLESS
AJConstants -> #CcLESSEQUAL
AJConstants -> #CcNA
AJConstants -> #CcNAE
AJConstants -> #CcNB
AJConstants -> #CcNBE
AJConstants -> #CcNC
AJConstants -> #CcNE
AJConstants -> #CcNEGATIVE
AJConstants -> #CcNG
AJConstants -> #CcNGE
AJConstants -> #CcNL
AJConstants -> #CcNLE
AJConstants -> #CcNO
AJConstants -> #CcNOCONDITION
AJConstants -> #CcNOOVERFLOW
AJConstants -> #CcNOTEQUAL
AJConstants -> #CcNOTSIGN
AJConstants -> #CcNOTZERO

AJConstants -> #CcNP
AJConstants -> #CcNS
AJConstants -> #CcNZ
AJConstants -> #CcO
AJConstants -> #CcOVERFLOW
AJConstants -> #CcP
AJConstants -> #CcPARITYEVEN
AJConstants -> #CcPARITYODD
AJConstants -> #CcPE
AJConstants -> #CcPO
AJConstants -> #CcPOSITIVE
AJConstants -> #CcS
AJConstants -> #CcSIGN
AJConstants -> #CcZ
AJConstants -> #CcZERO
AJConstants -> #InstCMOVA
AJConstants -> #InstJA
AJConstants -> #O64Only
AJConstants -> #OFM1
AJConstants -> #OFM10
AJConstants -> #OFM2
AJConstants -> #OFM24
AJConstants -> #OFM248
AJConstants -> #OFM4
AJConstants -> #OFM48
AJConstants -> #OFM4810
AJConstants -> #OFM8
AJConstants -> #OG16
AJConstants -> #OG163264
AJConstants -> #OG32
AJConstants -> #OG3264
AJConstants -> #OG64
AJConstants -> #OG8
AJConstants -> #OG8163264
AJConstants -> #OIMM
AJConstants -> #OMEM
AJConstants -> #OMM
AJConstants -> #OMMMEM
AJConstants -> #OMMXMM
AJConstants -> #OMMXMMMEM
AJConstants -> #ONOREX
AJConstants -> #OXMM
AJConstants -> #OXMMMEM
AJConstants -> #OpImm
AJConstants -> #OpLabel
AJConstants -> #OpMem
AJConstants -> #OpNONE
AJConstants -> #OpREG
AJConstants -> #PrefetchNTA
AJConstants -> #PrefetchT0
AJConstants -> #PrefetchT1
AJConstants -> #PrefetchT2
AJConstants -> #RIDEAX
AJConstants -> #RIDEBP
AJConstants -> #RIDEBX
AJConstants -> #RIDECX
AJConstants -> #RIDEDI
AJConstants -> #RIDEDX
AJConstants -> #RIDESI
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AJConstants -> #RIDESP
AJConstants -> #RegCodeMask
AJConstants -> #RegGPB
AJConstants -> #RegGPD
AJConstants -> #RegGPQ
AJConstants -> #RegGPW
AJConstants -> #RegHighByteMask
AJConstants -> #RegMM
AJConstants -> #RegProhibitsRexMask
AJConstants -> #RegRequiresRexMask
AJConstants -> #RegTypeMask
AJConstants -> #RegX87
AJConstants -> #RegXMM
AJConstants -> #SegmentCS
AJConstants -> #SegmentDS
AJConstants -> #SegmentES
AJConstants -> #SegmentFS
AJConstants -> #SegmentGS
AJConstants -> #SegmentNONE
AJConstants -> #SegmentSS
AJConstants -> #SizeByte
AJConstants -> #SizeDQWord
AJConstants -> #SizeDWord
AJConstants -> #SizeQWord
AJConstants -> #SizeTWord
AJConstants -> #SizeWord
AJx86InstructionDescription -> #instructions
AJx86Registers -> #AH
AJx86Registers -> #AL
AJx86Registers -> #AX
AJx86Registers -> #BH
AJx86Registers -> #BL
AJx86Registers -> #BP
AJx86Registers -> #BPL
AJx86Registers -> #BX
AJx86Registers -> #CH
AJx86Registers -> #CL
AJx86Registers -> #CX
AJx86Registers -> #Codes
AJx86Registers -> #DH
AJx86Registers -> #DI
AJx86Registers -> #DIL
AJx86Registers -> #DL
AJx86Registers -> #DX
AJx86Registers -> #EAX
AJx86Registers -> #EBP
AJx86Registers -> #EBX
AJx86Registers -> #ECX
AJx86Registers -> #EDI
AJx86Registers -> #EDX
AJx86Registers -> #EIP
AJx86Registers -> #ESI
AJx86Registers -> #ESP
AJx86Registers -> #IP
AJx86Registers -> #MM0
AJx86Registers -> #MM1
AJx86Registers -> #MM2
AJx86Registers -> #MM3
AJx86Registers -> #MM4
AJx86Registers -> #MM5

AJx86Registers -> #MM6
AJx86Registers -> #MM7
AJx86Registers -> #R10
AJx86Registers -> #R10B
AJx86Registers -> #R10D
AJx86Registers -> #R10W
AJx86Registers -> #R11
AJx86Registers -> #R11B
AJx86Registers -> #R11D
AJx86Registers -> #R11W
AJx86Registers -> #R12
AJx86Registers -> #R12B
AJx86Registers -> #R12D
AJx86Registers -> #R12W
AJx86Registers -> #R13
AJx86Registers -> #R13B
AJx86Registers -> #R13D
AJx86Registers -> #R13W
AJx86Registers -> #R14
AJx86Registers -> #R14B
AJx86Registers -> #R14D
AJx86Registers -> #R14W
AJx86Registers -> #R15
AJx86Registers -> #R15B
AJx86Registers -> #R15D
AJx86Registers -> #R15W
AJx86Registers -> #R8
AJx86Registers -> #R8B
AJx86Registers -> #R8D
AJx86Registers -> #R8W
AJx86Registers -> #R9
AJx86Registers -> #R9B
AJx86Registers -> #R9D
AJx86Registers -> #R9W
AJx86Registers -> #RAX
AJx86Registers -> #RBP
AJx86Registers -> #RBX
AJx86Registers -> #RCX
AJx86Registers -> #RDI
AJx86Registers -> #RDX
AJx86Registers -> #RIP
AJx86Registers -> #RSI
AJx86Registers -> #RSP
AJx86Registers -> #SI
AJx86Registers -> #SIL
AJx86Registers -> #SP
AJx86Registers -> #SPL
AJx86Registers -> #ST0
AJx86Registers -> #ST1
AJx86Registers -> #ST2
AJx86Registers -> #ST3
AJx86Registers -> #ST4
AJx86Registers -> #ST5
AJx86Registers -> #ST6
AJx86Registers -> #ST7
AJx86Registers -> #XMM0
AJx86Registers -> #XMM1
AJx86Registers -> #XMM10
AJx86Registers -> #XMM11
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AJx86Registers -> #XMM12
AJx86Registers -> #XMM13
AJx86Registers -> #XMM14
AJx86Registers -> #XMM15
AJx86Registers -> #XMM2
AJx86Registers -> #XMM3
AJx86Registers -> #XMM4
AJx86Registers -> #XMM5
AJx86Registers -> #XMM6
AJx86Registers -> #XMM7
AJx86Registers -> #XMM8
AJx86Registers -> #XMM9
AsyncFile -> #Busy
AsyncFile -> #ErrorCode
AthensBezierConverter -> #CollinearityEps
AthensBezierConverter -> #CurveAngleTolerance
AthensBezierConverter -> #DistanceEps
AthensCairoDefs -> #CAIRO_ANTIALIAS_BEST
AthensCairoDefs -> #CAIRO_ANTIALIAS_DEFAULT
AthensCairoDefs -> #CAIRO_ANTIALIAS_FAST
AthensCairoDefs -> #CAIRO_ANTIALIAS_GOOD
AthensCairoDefs -> #CAIRO_ANTIALIAS_GRAY
AthensCairoDefs -> #CAIRO_ANTIALIAS_NONE
AthensCairoDefs -> #CAIRO_ANTIALIAS_SUBPIXEL
AthensCairoDefs -> #CAIRO_EXTEND_NONE
AthensCairoDefs -> #CAIRO_EXTEND_PAD
AthensCairoDefs -> #CAIRO_EXTEND_REFLECT
AthensCairoDefs -> #CAIRO_EXTEND_REPEAT
AthensCairoDefs -> #CAIRO_FONT_SLANT_ITALIC
AthensCairoDefs -> #CAIRO_FONT_SLANT_NORMAL
AthensCairoDefs -> #CAIRO_FONT_SLANT_OBLIQUE
AthensCairoDefs -> #CAIRO_FONT_TYPE_FT
AthensCairoDefs -> #CAIRO_FONT_TYPE_QUARTZ
AthensCairoDefs -> #CAIRO_FONT_TYPE_TOY
AthensCairoDefs -> #CAIRO_FONT_TYPE_USER
AthensCairoDefs -> #CAIRO_FONT_TYPE_WIN32
AthensCairoDefs -> #CAIRO_FONT_WEIGHT_BOLD
AthensCairoDefs -> #CAIRO_FONT_WEIGHT_NORMAL
AthensCairoDefs -> #CAIRO_FORMAT_A1
AthensCairoDefs -> #CAIRO_FORMAT_A8
AthensCairoDefs -> #CAIRO_FORMAT_ARGB32
AthensCairoDefs -> #CAIRO_FORMAT_INVALID
AthensCairoDefs -> #CAIRO_FORMAT_RGB16_565
AthensCairoDefs -> #CAIRO_FORMAT_RGB24
AthensCairoDefs -> #CAIRO_HINT_METRICS_DEFAULT
AthensCairoDefs -> #CAIRO_HINT_METRICS_OFF
AthensCairoDefs -> #CAIRO_HINT_METRICS_ON
AthensCairoDefs -> #CAIRO_HINT_STYLE_DEFAULT
AthensCairoDefs -> #CAIRO_HINT_STYLE_FULL
AthensCairoDefs -> #CAIRO_HINT_STYLE_MEDIUM
AthensCairoDefs -> #CAIRO_HINT_STYLE_NONE
AthensCairoDefs -> #CAIRO_HINT_STYLE_SLIGHT
AthensCairoDefs -> #CAIRO_LINE_CAP_BUTT
AthensCairoDefs -> #CAIRO_LINE_CAP_ROUND
AthensCairoDefs -> #CAIRO_LINE_CAP_SQUARE
AthensCairoDefs -> #CAIRO_LINE_JOIN_BEVEL
AthensCairoDefs -> #CAIRO_LINE_JOIN_MITER
AthensCairoDefs -> #CAIRO_LINE_JOIN_ROUND
AthensCairoDefs -> #CAIRO_OPERATOR_ADD
AthensCairoDefs -> #CAIRO_OPERATOR_ATOP

AthensCairoDefs -> #CAIRO_OPERATOR_CLEAR
AthensCairoDefs -> #CAIRO_OPERATOR_COLOR_BURN
AthensCairoDefs -> #CAIRO_OPERATOR_COLOR_DODGE
AthensCairoDefs -> #CAIRO_OPERATOR_DARKEN
AthensCairoDefs -> #CAIRO_OPERATOR_DEST
AthensCairoDefs -> #CAIRO_OPERATOR_DEST_ATOP
AthensCairoDefs -> #CAIRO_OPERATOR_DEST_IN
AthensCairoDefs -> #CAIRO_OPERATOR_DEST_OUT
AthensCairoDefs -> #CAIRO_OPERATOR_DEST_OVER
AthensCairoDefs -> #CAIRO_OPERATOR_DIFFERENCE
AthensCairoDefs -> #CAIRO_OPERATOR_EXCLUSION
AthensCairoDefs -> #CAIRO_OPERATOR_HARD_LIGHT
AthensCairoDefs -> #CAIRO_OPERATOR_HSL_COLOR
AthensCairoDefs -> #CAIRO_OPERATOR_HSL_HUE
AthensCairoDefs -> #CAIRO_OPERATOR_HSL_LUMINOSITY
AthensCairoDefs -> #CAIRO_OPERATOR_HSL_SATURATION
AthensCairoDefs -> #CAIRO_OPERATOR_IN
AthensCairoDefs -> #CAIRO_OPERATOR_LIGHTEN
AthensCairoDefs -> #CAIRO_OPERATOR_MULTIPLY
AthensCairoDefs -> #CAIRO_OPERATOR_OUT
AthensCairoDefs -> #CAIRO_OPERATOR_OVER
AthensCairoDefs -> #CAIRO_OPERATOR_OVERLAY
AthensCairoDefs -> #CAIRO_OPERATOR_SATURATE
AthensCairoDefs -> #CAIRO_OPERATOR_SCREEN
AthensCairoDefs -> #CAIRO_OPERATOR_SOFT_LIGHT
AthensCairoDefs -> #CAIRO_OPERATOR_SOURCE
AthensCairoDefs -> #CAIRO_OPERATOR_XOR
AthensCairoDefs -> #CAIRO_STATUS_CLIP_NOT_REPRESENTABLE
AthensCairoDefs -> #CAIRO_STATUS_DEVICE_ERROR
AthensCairoDefs -> #CAIRO_STATUS_DEVICE_TYPE_MISMATCH
AthensCairoDefs -> #CAIRO_STATUS_FILE_NOT_FOUND
AthensCairoDefs -> #CAIRO_STATUS_FONT_TYPE_MISMATCH
AthensCairoDefs -> #CAIRO_STATUS_INVALID_CLUSTERS
AthensCairoDefs -> #CAIRO_STATUS_INVALID_CONTENT
AthensCairoDefs -> #CAIRO_STATUS_INVALID_DASH
AthensCairoDefs -> #CAIRO_STATUS_INVALID_DSC_COMMENT
AthensCairoDefs -> #CAIRO_STATUS_INVALID_FORMAT
AthensCairoDefs -> #CAIRO_STATUS_INVALID_INDEX
AthensCairoDefs -> #CAIRO_STATUS_INVALID_MATRIX
AthensCairoDefs -> #CAIRO_STATUS_INVALID_PATH_DATA
AthensCairoDefs -> #CAIRO_STATUS_INVALID_POP_GROUP
AthensCairoDefs -> #CAIRO_STATUS_INVALID_RESTORE
AthensCairoDefs -> #CAIRO_STATUS_INVALID_SIZE
AthensCairoDefs -> #CAIRO_STATUS_INVALID_SLANT
AthensCairoDefs -> #CAIRO_STATUS_INVALID_STATUS
AthensCairoDefs -> #CAIRO_STATUS_INVALID_STRIDE
AthensCairoDefs -> #CAIRO_STATUS_INVALID_STRING
AthensCairoDefs -> #CAIRO_STATUS_INVALID_VISUAL
AthensCairoDefs -> #CAIRO_STATUS_INVALID_WEIGHT
AthensCairoDefs -> #CAIRO_STATUS_LAST_STATUS
AthensCairoDefs -> #CAIRO_STATUS_NEGATIVE_COUNT
AthensCairoDefs -> #CAIRO_STATUS_NO_CURRENT_POINT
AthensCairoDefs -> #CAIRO_STATUS_NO_MEMORY
AthensCairoDefs -> #CAIRO_STATUS_NULL_POINTER
AthensCairoDefs -> #CAIRO_STATUS_PATTERN_TYPE_MISMATCH
AthensCairoDefs -> #CAIRO_STATUS_READ_ERROR
AthensCairoDefs -> #CAIRO_STATUS_SUCCESS
AthensCairoDefs -> #CAIRO_STATUS_SURFACE_FINISHED
AthensCairoDefs -> #CAIRO_STATUS_SURFACE_TYPE_MISMATCH
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AthensCairoDefs -> #CAIRO_STATUS_TEMP_FILE_ERROR
AthensCairoDefs -> #CAIRO_STATUS_USER_FONT_ERROR
AthensCairoDefs -> #CAIRO_STATUS_USER_FONT_IMMUTABLE
AthensCairoDefs -> #CAIRO_STATUS_USER_FONT_NOT_IMPLEMENTED
AthensCairoDefs -> #CAIRO_STATUS_WRITE_ERROR
AthensCairoDefs -> #CAIRO_SUBPIXEL_ORDER_BGR
AthensCairoDefs -> #CAIRO_SUBPIXEL_ORDER_DEFAULT
AthensCairoDefs -> #CAIRO_SUBPIXEL_ORDER_RGB
AthensCairoDefs -> #CAIRO_SUBPIXEL_ORDER_VBGR
AthensCairoDefs -> #CAIRO_SUBPIXEL_ORDER_VRGB
AthensCairoDefs -> #cairo_font_slant_t
AthensCairoDefs -> #cairo_font_type_t
AthensCairoDefs -> #cairo_font_weight_t
AthensCairoDefs -> #cairo_line_cap_t
AthensCairoDefs -> #cairo_line_join_t
AthensCairoDefs -> #cairo_operator_t
AthensCairoDefs -> #cairo_pattern_t
AthensCairoDefs -> #cairo_status_t
AthensCairoDefs -> #cairo_surface_t
AthensCairoDefs -> #cairo_t
AthensCairoDefs -> #cairo_text_extents_t
AthensCurveFlattener -> #CollinearityEps
AthensCurveFlattener -> #CurveAngleToleranceEpsilon
AthensCurveFlattener -> #CurveCollinearityEpsilon
AthensCurveFlattener -> #CurveDistanceEpsilon
AthensCurveFlattener -> #SubdivisionLimit
AthensPathBuilder -> #ZeroPoint
BalloonEngineConstants -> #BEAaLevelIndex
BalloonEngineConstants -> #BEBalloonEngineSize
BalloonEngineConstants -> #BEBitBltIndex
BalloonEngineConstants -> #BEClipRectIndex
BalloonEngineConstants -> #BEColorTransformIndex
BalloonEngineConstants -> #BEDeferredIndex
BalloonEngineConstants -> #BEDestOffsetIndex
BalloonEngineConstants -> #BEEdgeTransformIndex
BalloonEngineConstants -> #BEExternalsIndex
BalloonEngineConstants -> #BEFormsIndex
BalloonEngineConstants -> #BEPostFlushNeededIndex
BalloonEngineConstants -> #BESpanIndex
BalloonEngineConstants -> #BEWorkBufferIndex
BalloonEngineConstants -> #ETBalloonEdgeDataSize
BalloonEngineConstants -> #ETIndexIndex
BalloonEngineConstants -> #ETLinesIndex
BalloonEngineConstants -> #ETSourceIndex
BalloonEngineConstants -> #ETXValueIndex
BalloonEngineConstants -> #ETYValueIndex
BalloonEngineConstants -> #ETZValueIndex
BalloonEngineConstants -> #FTBalloonFillDataSize
BalloonEngineConstants -> #FTDestFormIndex
BalloonEngineConstants -> #FTIndexIndex
BalloonEngineConstants -> #FTMaxXIndex
BalloonEngineConstants -> #FTMinXIndex
BalloonEngineConstants -> #FTSourceIndex
BalloonEngineConstants -> #FTYValueIndex
BalloonEngineConstants -> #GBBaseSize
BalloonEngineConstants -> #GBBitmapDepth
BalloonEngineConstants -> #GBBitmapHeight
BalloonEngineConstants -> #GBBitmapRaster
BalloonEngineConstants -> #GBBitmapSize
BalloonEngineConstants -> #GBBitmapWidth

BalloonEngineConstants -> #GBColormapOffset
BalloonEngineConstants -> #GBColormapSize
BalloonEngineConstants -> #GBEndX
BalloonEngineConstants -> #GBEndY
BalloonEngineConstants -> #GBFinalX
BalloonEngineConstants -> #GBMBaseSize
BalloonEngineConstants -> #GBTileFlag
BalloonEngineConstants -> #GBUpdateDDX
BalloonEngineConstants -> #GBUpdateDDY
BalloonEngineConstants -> #GBUpdateDX
BalloonEngineConstants -> #GBUpdateDY
BalloonEngineConstants -> #GBUpdateData
BalloonEngineConstants -> #GBUpdateX
BalloonEngineConstants -> #GBUpdateY
BalloonEngineConstants -> #GBViaX
BalloonEngineConstants -> #GBViaY
BalloonEngineConstants -> #GBWideEntry
BalloonEngineConstants -> #GBWideExit
BalloonEngineConstants -> #GBWideExtent
BalloonEngineConstants -> #GBWideFill
BalloonEngineConstants -> #GBWideSize
BalloonEngineConstants -> #GBWideUpdateData
BalloonEngineConstants -> #GBWideWidth
BalloonEngineConstants -> #GEBaseEdgeSize
BalloonEngineConstants -> #GEBaseFillSize
BalloonEngineConstants -> #GEEdgeClipFlag
BalloonEngineConstants -> #GEEdgeFillsInvalid
BalloonEngineConstants -> #GEFillIndexLeft
BalloonEngineConstants -> #GEFillIndexRight
BalloonEngineConstants -> #GENumLines
BalloonEngineConstants -> #GEObjectIndex
BalloonEngineConstants -> #GEObjectLength
BalloonEngineConstants -> #GEObjectType
BalloonEngineConstants -> #GEObjectUnused
BalloonEngineConstants -> #GEPrimitiveBezier
BalloonEngineConstants -> #GEPrimitiveClippedBitmapFill
BalloonEngineConstants -> #GEPrimitiveEdge
BalloonEngineConstants -> #GEPrimitiveEdgeMask
BalloonEngineConstants -> #GEPrimitiveFill
BalloonEngineConstants -> #GEPrimitiveFillMask
BalloonEngineConstants -> #GEPrimitiveLine
BalloonEngineConstants -> #GEPrimitiveLinearGradientFill
BalloonEngineConstants -> #GEPrimitiveRadialGradientFill
BalloonEngineConstants -> #GEPrimitiveRepeatedBitmapFill
BalloonEngineConstants -> #GEPrimitiveTypeMask
BalloonEngineConstants -> #GEPrimitiveUnknown
BalloonEngineConstants -> #GEPrimitiveWide
BalloonEngineConstants -> #GEPrimitiveWideBezier
BalloonEngineConstants -> #GEPrimitiveWideEdge
BalloonEngineConstants -> #GEPrimitiveWideLine
BalloonEngineConstants -> #GEPrimitiveWideMask
BalloonEngineConstants -> #GEStateAddingFromGET
BalloonEngineConstants -> #GEStateBlitBuffer
BalloonEngineConstants -> #GEStateCompleted
BalloonEngineConstants -> #GEStateScanningAET
BalloonEngineConstants -> #GEStateUnlocked
BalloonEngineConstants -> #GEStateUpdateEdges
BalloonEngineConstants -> #GEStateWaitingChange
BalloonEngineConstants -> #GEStateWaitingForEdge
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BalloonEngineConstants -> #GEStateWaitingForFill
BalloonEngineConstants -> #GEXValue
BalloonEngineConstants -> #GEYValue
BalloonEngineConstants -> #GEZValue
BalloonEngineConstants -> #GErrorAETEntry
BalloonEngineConstants -> #GErrorBadState
BalloonEngineConstants -> #GErrorFillEntry
BalloonEngineConstants -> #GErrorGETEntry
BalloonEngineConstants -> #GErrorNeedFlush
BalloonEngineConstants -> #GErrorNoMoreSpace
BalloonEngineConstants -> #GFDirectionX
BalloonEngineConstants -> #GFDirectionY
BalloonEngineConstants -> #GFNormalX
BalloonEngineConstants -> #GFNormalY
BalloonEngineConstants -> #GFOriginX
BalloonEngineConstants -> #GFOriginY
BalloonEngineConstants -> #GFRampLength
BalloonEngineConstants -> #GFRampOffset
BalloonEngineConstants -> #GGBaseSize
BalloonEngineConstants -> #GLBaseSize
BalloonEngineConstants -> #GLEndX
BalloonEngineConstants -> #GLEndY
BalloonEngineConstants -> #GLError
BalloonEngineConstants -> #GLErrorAdjDown
BalloonEngineConstants -> #GLErrorAdjUp
BalloonEngineConstants -> #GLWideEntry
BalloonEngineConstants -> #GLWideExit
BalloonEngineConstants -> #GLWideExtent
BalloonEngineConstants -> #GLWideFill
BalloonEngineConstants -> #GLWideSize
BalloonEngineConstants -> #GLWideWidth
BalloonEngineConstants -> #GLXDirection
BalloonEngineConstants -> #GLXIncrement
BalloonEngineConstants -> #GLYDirection
BalloonEngineConstants -> #GWAAColorMask
BalloonEngineConstants -> #GWAAColorShift
BalloonEngineConstants -> #GWAAHalfPixel
BalloonEngineConstants -> #GWAALevel
BalloonEngineConstants -> #GWAAScanMask
BalloonEngineConstants -> #GWAAShift
BalloonEngineConstants -> #GWAETStart
BalloonEngineConstants -> #GWAETUsed
BalloonEngineConstants -> #GWBezierHeightSubdivisions
BalloonEngineConstants -> #GWBezierLineConversions
BalloonEngineConstants -> #GWBezierMonotonSubdivisions
BalloonEngineConstants -> #GWBezierOverflowSubdivisions
BalloonEngineConstants -> #GWBufferTop
BalloonEngineConstants -> #GWClearSpanBuffer
BalloonEngineConstants -> #GWClipMaxX
BalloonEngineConstants -> #GWClipMaxY
BalloonEngineConstants -> #GWClipMinX
BalloonEngineConstants -> #GWClipMinY
BalloonEngineConstants -> #GWColorTransform
BalloonEngineConstants -> #GWCountAddAETEntry
BalloonEngineConstants -> #GWCountChangeAETEntry
BalloonEngineConstants -> #GWCountDisplaySpan
BalloonEngineConstants -> #GWCountFinishTest
BalloonEngineConstants -> #GWCountInitializing
BalloonEngineConstants -> #GWCountMergeFill
BalloonEngineConstants -> #GWCountNextAETEntry

BalloonEngineConstants -> #GWCountNextFillEntry
BalloonEngineConstants -> #GWCountNextGETEntry
BalloonEngineConstants -> #GWCurrentY
BalloonEngineConstants -> #GWCurrentZ
BalloonEngineConstants -> #GWDestOffsetX
BalloonEngineConstants -> #GWDestOffsetY
BalloonEngineConstants -> #GWEdgeTransform
BalloonEngineConstants -> #GWFillMaxX
BalloonEngineConstants -> #GWFillMaxY
BalloonEngineConstants -> #GWFillMinX
BalloonEngineConstants -> #GWFillMinY
BalloonEngineConstants -> #GWFillOffsetX
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NBWinConstants -> #WS_SIZEBOX
NBWinConstants -> #WS_SYSMENU
NBWinConstants -> #WS_TABSTOP
NBWinConstants -> #WS_THICKFRAME
NBWinConstants -> #WS_TILED
NBWinConstants -> #WS_TILEDWINDOW
NBWinConstants -> #WS_VISIBLE
NBWinConstants -> #WS_VSCROLL
NBWinTypes -> #ATOM
NBWinTypes -> #BOOL
NBWinTypes -> #BOOLEAN
NBWinTypes -> #BYTE
NBWinTypes -> #CALLBACK
NBWinTypes -> #CHAR
NBWinTypes -> #COLORREF
NBWinTypes -> #DWORD
NBWinTypes -> #DWORD32
NBWinTypes -> #DWORD64
NBWinTypes -> #DWORDLONG
NBWinTypes -> #DWORD_PTR
NBWinTypes -> #FLOAT
NBWinTypes -> #HACCEL
NBWinTypes -> #HALF_PTR
NBWinTypes -> #HANDLE
NBWinTypes -> #HBRUSH
NBWinTypes -> #HCOLORSPACE
NBWinTypes -> #HCONV
NBWinTypes -> #HCONVLIST
NBWinTypes -> #HCURSOR
NBWinTypes -> #HDC
NBWinTypes -> #HDDEDATA
NBWinTypes -> #HDESK
NBWinTypes -> #HDROP
NBWinTypes -> #HDWP
NBWinTypes -> #HENHMETAFILE
NBWinTypes -> #HFILE
NBWinTypes -> #HFONT
NBWinTypes -> #HGDIOBJ
NBWinTypes -> #HGLOBAL
NBWinTypes -> #HHOOK
NBWinTypes -> #HICON
NBWinTypes -> #HINSTANCE
NBWinTypes -> #HKEY
NBWinTypes -> #HKL
NBWinTypes -> #HLOCAL
NBWinTypes -> #HMENU
NBWinTypes -> #HMETAFILE
NBWinTypes -> #HMODULE
NBWinTypes -> #HMONITOR
NBWinTypes -> #HPALETTE
NBWinTypes -> #HPEN
NBWinTypes -> #HRESULT
NBWinTypes -> #HRGN
NBWinTypes -> #HRSRC
NBWinTypes -> #HSZ
NBWinTypes -> #HWINSTA
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NBWinTypes -> #HWND
NBWinTypes -> #INT
NBWinTypes -> #INT32
NBWinTypes -> #INT64
NBWinTypes -> #INT_PTR
NBWinTypes -> #LANGID
NBWinTypes -> #LCID
NBWinTypes -> #LCTYPE
NBWinTypes -> #LGRPID
NBWinTypes -> #LONG
NBWinTypes -> #LONG32
NBWinTypes -> #LONG64
NBWinTypes -> #LONGLONG
NBWinTypes -> #LONG_PTR
NBWinTypes -> #LPARAM
NBWinTypes -> #LPBOOL
NBWinTypes -> #LPBYTE
NBWinTypes -> #LPCOLORREF
NBWinTypes -> #LPCSTR
NBWinTypes -> #LPCTSTR
NBWinTypes -> #LPCVOID
NBWinTypes -> #LPCWSTR
NBWinTypes -> #LPDWORD
NBWinTypes -> #LPHANDLE
NBWinTypes -> #LPINT
NBWinTypes -> #LPLONG
NBWinTypes -> #LPSTR
NBWinTypes -> #LPTCH
NBWinTypes -> #LPTSTR
NBWinTypes -> #LPVOID
NBWinTypes -> #LPWCH
NBWinTypes -> #LPWORD
NBWinTypes -> #LPWSTR
NBWinTypes -> #LRESULT
NBWinTypes -> #PBOOL
NBWinTypes -> #PBOOLEAN
NBWinTypes -> #PBYTE
NBWinTypes -> #PCHAR
NBWinTypes -> #PCSTR
NBWinTypes -> #PCTSTR
NBWinTypes -> #PCWSTR
NBWinTypes -> #PDWORD
NBWinTypes -> #PDWORD32
NBWinTypes -> #PDWORD64
NBWinTypes -> #PDWORDLONG
NBWinTypes -> #PDWORD_PTR
NBWinTypes -> #PFLOAT
NBWinTypes -> #PHALF_PTR
NBWinTypes -> #PHANDLE
NBWinTypes -> #PHKEY
NBWinTypes -> #PINT
NBWinTypes -> #PINT32
NBWinTypes -> #PINT64
NBWinTypes -> #PINT_PTR
NBWinTypes -> #PLCID
NBWinTypes -> #PLONG
NBWinTypes -> #PLONG32
NBWinTypes -> #PLONG64
NBWinTypes -> #PLONGLONG
NBWinTypes -> #PLONG_PTR

NBWinTypes -> #POINT
NBWinTypes -> #POINTER_32
NBWinTypes -> #POINTER_64
NBWinTypes -> #PSHORT
NBWinTypes -> #PSIZE_T
NBWinTypes -> #PSSIZE_T
NBWinTypes -> #PSTR
NBWinTypes -> #PTBYTE
NBWinTypes -> #PTCHAR
NBWinTypes -> #PTSTR
NBWinTypes -> #PUCHAR
NBWinTypes -> #PUHALF_PTR
NBWinTypes -> #PUINT
NBWinTypes -> #PUINT32
NBWinTypes -> #PUINT64
NBWinTypes -> #PUINT_PTR
NBWinTypes -> #PULONG
NBWinTypes -> #PULONG32
NBWinTypes -> #PULONG64
NBWinTypes -> #PULONGLONG
NBWinTypes -> #PULONG_PTR
NBWinTypes -> #PUSHORT
NBWinTypes -> #PVOID
NBWinTypes -> #PWCHAR
NBWinTypes -> #PWORD
NBWinTypes -> #PWSTR
NBWinTypes -> #RECT
NBWinTypes -> #SC_HANDLE
NBWinTypes -> #SC_LOCK
NBWinTypes -> #SERVICE_STATUS_HANDLE
NBWinTypes -> #SHORT
NBWinTypes -> #SIZE_T
NBWinTypes -> #SSIZE_T
NBWinTypes -> #TBYTE
NBWinTypes -> #TCHAR
NBWinTypes -> #UCHAR
NBWinTypes -> #UHALF_PTR
NBWinTypes -> #UINT
NBWinTypes -> #UINT32
NBWinTypes -> #UINT64
NBWinTypes -> #UINT_PTR
NBWinTypes -> #ULONG
NBWinTypes -> #ULONG32
NBWinTypes -> #ULONG64
NBWinTypes -> #ULONGLONG
NBWinTypes -> #ULONG_PTR
NBWinTypes -> #USHORT
NBWinTypes -> #USN
NBWinTypes -> #VOID
NBWinTypes -> #WCHAR
NBWinTypes -> #WNDCLASSEX
NBWinTypes -> #WNDPROC
NBWinTypes -> #WORD
NBWinTypes -> #WPARAM
NativeBoostConstants -> #ErrInvalidPlatformId
NativeBoostConstants -> #ErrInvalidPrimitiveVoltageUse
NativeBoostConstants -> #ErrNoNBPrimitive
NativeBoostConstants -> #ErrNoNativeCodeInMethod
NativeBoostConstants -> #ErrNotEnabled
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NativeBoostConstants -> #ErrRunningViaInterpreter
NativeBoostConstants -> #Linux32PlatformId
NativeBoostConstants -> #Mac32PlatformId
NativeBoostConstants -> #NBErrorBase
NativeBoostConstants -> #NBErrorDescriptions
NativeBoostConstants -> #NBPrimErrBadArgument
NativeBoostConstants -> #NBPrimErrBadIndex
NativeBoostConstants -> #NBPrimErrBadMethod
NativeBoostConstants -> #NBPrimErrBadNumArgs
NativeBoostConstants -> #NBPrimErrBadReceiver
NativeBoostConstants -> #NBPrimErrGenericFailure
NativeBoostConstants -> #NBPrimErrInappropriate
NativeBoostConstants -> #NBPrimErrLimitExceeded
NativeBoostConstants -> #NBPrimErrNamedInternal
NativeBoostConstants -> #NBPrimErrNoCMemory
NativeBoostConstants -> #NBPrimErrNoMemory
NativeBoostConstants -> #NBPrimErrNoModification
NativeBoostConstants -> #NBPrimErrNotFound
NativeBoostConstants -> #NBPrimErrObjectMayMove
NativeBoostConstants -> #NBPrimErrUnsupported
NativeBoostConstants -> #NBPrimNoErr
NativeBoostConstants -> #Win32PlatformId
NetNameResolver -> #ResolverBusy
NetNameResolver -> #ResolverError
NetNameResolver -> #ResolverMutex
NetNameResolver -> #ResolverReady
NetNameResolver -> #ResolverUninitialized
OCASTTranslator -> #OptimizedMessages
PNGReadWriter -> #BPP
PNGReadWriter -> #BlockHeight
PNGReadWriter -> #BlockWidth
PNGReadWriter -> #StandardColors
PNGReadWriter -> #StandardSwizzleMaps
ParseNode -> #Bfp
ParseNode -> #BtpLong
ParseNode -> #CodeBases
ParseNode -> #CodeLimits
ParseNode -> #DblExtDoAll
ParseNode -> #Dup
ParseNode -> #EndMethod
ParseNode -> #EndRemote
ParseNode -> #Jmp
ParseNode -> #JmpLimit
ParseNode -> #JmpLong
ParseNode -> #LdFalse
ParseNode -> #LdInstLong
ParseNode -> #LdInstType
ParseNode -> #LdLitIndType
ParseNode -> #LdLitType
ParseNode -> #LdMinus1
ParseNode -> #LdNil
ParseNode -> #LdSelf
ParseNode -> #LdSuper
ParseNode -> #LdTempType
ParseNode -> #LdThisContext
ParseNode -> #LdTrue
ParseNode -> #LoadLong
ParseNode -> #LongLongDoAll
ParseNode -> #NodeFalse
ParseNode -> #NodeNil

ParseNode -> #NodeSelf
ParseNode -> #NodeSuper
ParseNode -> #NodeThisContext
ParseNode -> #NodeTrue
ParseNode -> #Pop
ParseNode -> #Send
ParseNode -> #SendLimit
ParseNode -> #SendLong
ParseNode -> #SendLong2
ParseNode -> #SendPlus
ParseNode -> #SendType
ParseNode -> #ShortStoP
ParseNode -> #StdLiterals
ParseNode -> #StdSelectors
ParseNode -> #StdVariables
ParseNode -> #Store
ParseNode -> #StorePop
ProcessorScheduler -> #HighIOPriority
ProcessorScheduler -> #LowIOPriority
ProcessorScheduler -> #SystemBackgroundPriority
ProcessorScheduler -> #SystemRockBottomPriority
ProcessorScheduler -> #TimingPriority
ProcessorScheduler -> #UserBackgroundPriority
ProcessorScheduler -> #UserInterruptPriority
ProcessorScheduler -> #UserSchedulingPriority
RBAbstractClass -> #LookupSuperclass
RBClass -> #LookupComment
RBScanner -> #PatternVariableCharacter
RBScanner -> #PatternVariableCharacter
RBScanner -> #classificationTable
RBTransformationRule -> #RecursiveSelfRule
RealEstateAgent -> #StaggerOffset
RemotesManager -> #addRemoteIcon
RemotesManager -> #editRemoteIcon
RemotesManager -> #removeRemoteIcon
RxMatcher -> #Cr
RxMatcher -> #Lf
RxParser -> #BackslashConstants
RxParser -> #BackslashSpecials
RxsPredicate -> #EscapedLetterSelectors
RxsPredicate -> #NamedClassSelectors
SHA1 -> #K1
SHA1 -> #K2
SHA1 -> #K3
SHA1 -> #K4
Scanner -> #DoItCharacter
SetElement -> #NilElement
Socket -> #Connected
Socket -> #DeadServer
Socket -> #InvalidSocket
Socket -> #OtherEndClosed
Socket -> #TCPSocketType
Socket -> #ThisEndClosed
Socket -> #UDPSocketType
Socket -> #Unconnected
Socket -> #WaitingForConnection
String -> #AsciiOrder
String -> #CSLineEnders
String -> #CSNonSeparators
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String -> #CSSeparators
String -> #CaseInsensitiveOrder
String -> #CaseSensitiveOrder
String -> #CrLfExchangeTable
String -> #LowercasingTable
String -> #Tokenish
String -> #TypeTable
String -> #UppercasingTable
TextConstants -> #BS
TextConstants -> #BS2
TextConstants -> #Basal
TextConstants -> #Bold
TextConstants -> #CR
TextConstants -> #Centered
TextConstants -> #Clear
TextConstants -> #CrossedX
TextConstants -> #CtrlA
TextConstants -> #CtrlB
TextConstants -> #CtrlC
TextConstants -> #CtrlD
TextConstants -> #CtrlDigits
TextConstants -> #CtrlE
TextConstants -> #CtrlF
TextConstants -> #CtrlG
TextConstants -> #CtrlH
TextConstants -> #CtrlI
TextConstants -> #CtrlJ
TextConstants -> #CtrlK
TextConstants -> #CtrlL
TextConstants -> #CtrlM
TextConstants -> #CtrlN
TextConstants -> #CtrlO
TextConstants -> #CtrlOpenBrackets
TextConstants -> #CtrlP
TextConstants -> #CtrlQ
TextConstants -> #CtrlR
TextConstants -> #CtrlS
TextConstants -> #CtrlT
TextConstants -> #CtrlU
TextConstants -> #CtrlV
TextConstants -> #CtrlW
TextConstants -> #CtrlX
TextConstants -> #CtrlY
TextConstants -> #CtrlZ
TextConstants -> #Ctrla
TextConstants -> #Ctrlb
TextConstants -> #Ctrlc
TextConstants -> #Ctrld
TextConstants -> #Ctrle
TextConstants -> #Ctrlf
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Unicode -> #Cf
Unicode -> #Cn
Unicode -> #Co
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Unicode -> #Lo
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Unicode -> #Nd
Unicode -> #Nl
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ZnUTF8Encoder -> #ByteASCIISet
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